凤凰联盟官方网址

  • <tr id='xyS6sc'><strong id='xyS6sc'></strong><small id='xyS6sc'></small><button id='xyS6sc'></button><li id='xyS6sc'><noscript id='xyS6sc'><big id='xyS6sc'></big><dt id='xyS6sc'></dt></noscript></li></tr><ol id='xyS6sc'><option id='xyS6sc'><table id='xyS6sc'><blockquote id='xyS6sc'><tbody id='xyS6sc'></tbody></blockquote></table></option></ol><u id='xyS6sc'></u><kbd id='xyS6sc'><kbd id='xyS6sc'></kbd></kbd>

    <code id='xyS6sc'><strong id='xyS6sc'></strong></code>

    <fieldset id='xyS6sc'></fieldset>
          <span id='xyS6sc'></span>

              <ins id='xyS6sc'></ins>
              <acronym id='xyS6sc'><em id='xyS6sc'></em><td id='xyS6sc'><div id='xyS6sc'></div></td></acronym><address id='xyS6sc'><big id='xyS6sc'><big id='xyS6sc'></big><legend id='xyS6sc'></legend></big></address>

              <i id='xyS6sc'><div id='xyS6sc'><ins id='xyS6sc'></ins></div></i>
              <i id='xyS6sc'></i>
            1. <dl id='xyS6sc'></dl>
              1. <blockquote id='xyS6sc'><q id='xyS6sc'><noscript id='xyS6sc'></noscript><dt id='xyS6sc'></dt></q></blockquote><noframes id='xyS6sc'><i id='xyS6sc'></i>
                船舶应用
                船舶应用

                • 1、引言

                  船舶综合全电力推进系统是现行船舶平台的电∞力和动力两大系统发展◤的综合,它适合于不同种类∏的船舶。世界各国都在针∞对船舶综合全电力推进系统进行深入的】研究,国外已经开发了∏多种类型的综合全电力◥推进系统并在多型船舶上应用。据统计,在 80 年代后期以来,发达国家新建∩的客轮、破冰船、渡轮约有 30%已采用综合全电力推≡进系统,且成流≡行趋势;国内民用船舶中全【电力推进的应用已有多种形ω式:如江南船厂为国外设『计建造的 3200 吨全电力推进化学品运输船、胜利油田▓的“胜利 232”号工程船、我国 2006 年交工的首艘采用综合】全电力推进系统的火车滚装渡船“中铁渤海一号”。作为∑船舶主动力系统的综合全电力推进系统由于其高效@率、高可靠性、高自动化以及低维护也成为新世纪大型水面船舶青Ψ睐的主推进系统。
                  船舶▼综合全电力推进系统包括:发电、输电、配电、变电、拖动、推进、储能、监控和电力管理↓等诸,多功能多系统的复杂性也带来了严重的谐波污染〒问题。综合全电力推进系统各ぷ个功能模块是否运行良好♀,是否◥相互协调好,关系着整个综合全Ψ电力推进系统是否能具有良好的运№行状态和优异的工作性能。

                  2、谐波及波形畸变的产生和危害
                  2.1 谐波来源

                  综合全电力推〓进系统中产生的谐波♀来源主要」有:
                  1) 推进同步发电ξ机。推进同步发↙电机产生的谐波电动势是因转子和定★子之间空气隙中的磁场非▅正弦分布所引起的。推进同〓步发电机每对磁极下气隙中的磁场不可能ω 完全按正弦分布,这是由◢磁极结构所决定的。因此,电动势中必然含有谐波分量。
                  2) 变压器。变压器的励∴磁回路具有非线性电感,因此,励磁▅电流是非正弦波形,使得电流@波形发生波形畸变。在空载时,非正弦的励磁电流在变压器原绕组的々漏抗上产生压降,使变压器感应电←势中包含谐波分量。变压器空载合闸『时,常常会出现很大的励磁涌流。在严重的情况→下,涌流波形强烈畸︻变,不但▽幅值可高达数十倍于额定空载电流,而且正负半波的▃波形极不对称。这种↑涌流持续时间比较长,属于准◢稳定的非正弦波。特征谐波是整流设备产生波形畸①变的主要々成分。由于输电系统@ 的电压等级高、输送功率大,即使百分数很小的谐波〇分量也会对低压设备及☆弱电设备产生不可忽视的骚扰。
                  3) 变频器。船舶综合全电力推进系统采用变@ 频进行调速,而谐波频率又随︼频率变化,这样对船舶电网∑的电源质量影响较大。变频电路输入电流的谐波分量№十分复杂,其频率不仅和输入电源频率、变频电路¤的结构有关,而且和变频电路▼的输出频率有关。
                  在上述↓三个谐波源中推进同步发电机为谐波电压源,变压器为谐波★电流源。对于谐波电流〇源的设备来说,即使供给它们的@ 电压是理想的正弦波,它们↘所取用的电流中也会含有谐波成分。谐波的含量取决于它〒们本身的特性和工々作状况。谐波电流注入船舶电网后,在船舶电网系统的阻卐抗上引起谐波压降,也会使电网系统中各点的■电压产生波形畸变。

                  2.2 谐波危害

                  谐波№是影响电能质量的重要因素之一,它通常是由电网中的非线性⊙元件产生的。船舶电网中的谐↘波对船舶设备的运行会产生许多◎不利的影响:
                  1) 使船舶发电机的效率降低;
                  2) 使电气设备☆出现过热,振动和噪』音的现象,并产生▲绝缘老化、使用∏寿命缩短,甚至发生故障或□ 烧毁的结果;3)谐波还会引起船舶继电√保护和自动控制装置的可靠性降低,产生误动作☆;4)谐波对通信设备和电子设备≡也会产生严重干◤扰。因此,谐波对于船舶电网是一种电磁环境的污染。

                  微电子√设备在船舶测量、控制、保护、操作等系统中∞应用广泛,它对电流波形有较高的要求,易遭受谐波干ぷ扰。综合全电力推进系统产生的谐波▆通过船舶电网对船上包∑ 括测量、保护、控制、操作等系统中的仪表、仪器和设备卐造成影响。如谐波对计算机的干扰√主要是影响磁性元件和数据处理系统ぷ的精度和性能,从而ξ影响计算机处理数据的质量。谐波对船舶照明及生活用电〖等设备的影响主→要表现在增加损耗、降低寿命和运行性能劣化。谐波问题▅日益突出和严重,国内外都发生过因谐波而ぷ引发的重大船舶事故ζ 。特别由于变频驱动的使用,使电动机绝缘物』以及电缆绝缘层迅速老化、甚至烧毁;共模电压在电机转轴■上感应出高的◥轴电压,并形成轴承放电电流从而电腐蚀轴承,使㊣ 电机在短期内报废;高频传导性和辐射ζ 性 EMI 使变频驱■动系统可靠性下降,故障率增加,并卐影响电网上的其他用电设备。因此,研究变频器所带来的负①面效应及其解决方法在电力推进系统中具有重要的理论◣意义和实用价值。

                  3、综合→电力推进系统谐波限制分析

                  为解决电力电子装置产生的█谐波污染和低功率因数问题,传统的手ξ 段是设置无功补偿电容器和 LC 滤波器,这两种方』法结构简单,既∑可以抑制谐波,又可以补偿无功功↙率,一直被ㄨ广泛应用。但这种方ζ法的主要缺点是补偿特性受电网阻抗和运行状态影响,易和系统发〗生并联谐振,此外,此种∑补偿方法损耗大,又只能◆补偿固定频率的谐波,难以对变化的▂无功功率和谐波进行有※效的动态补偿。而随着电力系统的发▽展,对无功功率和谐波进行快速动态补偿的需求越√来越大。目前的趋势※是采用电力电子装置进行谐波补偿√,即采用有源滤波器(ActivePower Filter,APF)。

                  3.1 有源滤波器ω的优势
                  有源』滤波器的主要优点有;

                  1) 有源滤波装置是一个高阻抗电流源,它的接入对系〓统阻抗不会产生影响,因此此类装置适合●系列化、规◆模化生产。
                  2) 当电网结构发生变化时装置受电网阻∩抗的影响不大,不存在与电网阻抗→发生谐波的危险,同时还能抑制串并联谐振。
                  3) 原理上比 PPF 更为优越,用同一台装置可同时◥补偿多次谐波电流和非整流■倍次的谐波电流,完成各⌒ 次谐波的治理。
                  4) 实现动态补偿,可对频率和☉大小均变化的谐波及变化的「无功功率进行补偿,对补』偿对象的变化有极快的响应速度。
                  5) 由于装置本身能完成输出限╲制,当线路中的谐波电流突【然增大时有源滤波器不会Ψ发生过载,并且能正常发挥作用,不⌒ 需要与系统断开。
                  6) 具备多种补▓偿功能,可以对无功功率和负序ω 进行补偿。
                  7) 谐波补偿特性不受电网频率变化的影响。
                  8) 可以对多个谐◇波源进行集中治理。

                  3.2 ANAPF 系列有源♀电力滤波装置

                  ANAPF 系列有源电力滤波装ㄨ置作为一种用于动★态抑制谐波、补偿无功的♀新型电力电子装置,它能够对大小和频率都变化的谐波以及变化的无功进行补偿,可克服 LC滤波器等传统的谐波抑ㄨ制和无功补偿方法的】缺点,实现了动态∑ 跟踪补偿,是谐波治理和无功补偿的最⊙佳选择,是确保海上平台电力系统稳定运№行的有力保△障。

                  3.2.1 工作原理

                  ANAPF 系列有源电力滤波装置,以并联的方式接入∑ 电网,通过实时〓检测负载的谐波和无功分量,采用 PWM 变流技术,从变流器中产生一个和↘当前谐波分量和无功分量对应∴的反向分量并实时注□入电力系统,从而实现谐波治理】和无功补偿。(见图 1)


                  图 1 ANAPF 有源电力滤波装置的工作原理图

                  3.2.2 技术参数




                  3.2.3 功能▲模块介绍⌒
                  控】制器模块 APFMC-C100
                  主要由:DSP(数字信号处理器)、FPGA 逻辑器件、AD 信ω号采样电路、DI/DO 输入输出控制电∴路、PWM 波形控◆制电路、RS485 通讯电路等组成,主◥要用来完成电压、电流◤等信号的采集和处理、指令电流的计算、开关电路的生成、PWM 信号∑的输出、系统对外通讯与系统保∩护等功能。控制系统是有源滤波器的核心,它决定了有源电◆力滤波器系统的主要性能○和指标。
                  变流器模←块 APFCOV
                  其核心是储能电容和 IGBT 模块。变流器的■作用主要是将电网的电压经 IGBT 功率模块整№流后为储能电容充电,使母线电压维持在某个稳定的值,在这个过程中@ 变流器主要工作在整流状态,当◣主电路产生补偿电流时,变流◥器又工作在逆变状态。考虑到产品是在电网中长时间运行的,因此直ω 流支撑电容采用薄膜电容,功率〖模块采用德国原装产品,以确保整机质量。变流器的选择根据↓补偿电流的大小而有¤所不同。
                  电抗器模块 APF-RE.DG、APF-RE.SDG
                  APF 电抗器起滤波作用,滤除 APF 发出的电网不需@ 要的谐波。电抗器可分为★单相和三相,电流从 15A 到 200A 等多种规格。
                  人机操作界面 APF-HMI
                  APF 柜在工作々时,系统可以监测︼其网侧电流、APF 桥臂电流以及负载侧电流,用户可◥以通过 HMI 来对 APF 的运行模↓式进行设置,对于运行中出现的问题,可以产生对应的事件记录。HMI 就是我司针对∮电力系统,工矿企业,公用设施,智能大厦的电力▲监控需求而设计的一种智能仪表,它采用高亮『度 TFT-LCD 彩屏显☆示界面,通过面板按键来实现√参数设置和控制,集成全部电力参数→的测量、全面的电◤能计量和考核管理、多种电力质量参数□ 的分析。
                  配套的电流采样互感器 AKH-0.66-K

                  3.2.4 技术优势

                  DSP+FPGA 全数字控制方式,具有极快的响≡应时间;先进的主电路⊙拓扑和控制算法,精度更高、运行更稳╱定;一机多能,既可补谐①波,又可兼卐补无功;模块化设计,便于生产▅调试;
                  便利的并○联设计,方便扩容;
                  具有完善■的桥臂过流、保护功能;
                  使用方便,易于操作和维护。

                  3.2.5 有源滤波器报价及元件清№单



                  4、ANAPF 有源电力滤波装置的应♀用实例
                  本文以某实际大型旅游客轮的综合电力推进系统为↘例,其基本参数╱如下


                  该船的电力系统主要︼分两大部分:6600V 中压电网和 440V 低压电网。4 台主㊣ 发电机为6600V 主电卐网供电卐→,主推进电机和侧推器为㊣ 其主要负载;440 主■电网通过变压器接在 6600V电网上,其负载包括主推进电机↑励磁系统、舵机、酒店电力服务系统以及其△他辅助设备等。
                  当 ANAPF 未投入电网时,电网侧和负载侧的电压电流※是完全相同的,所以下面仅列出了电网㊣ 侧的相电压和相电流。
                  图 2 和图 3 表明,ANAPF 未投入时电网侧相电ξ 压几乎没有发生畸变,但相电ξ流的波形畸变十分严重。下面是分别对电网『侧 A 相相电压和相电流的傅里叶分〗析,对畸变程度进行量化(0.02s 后的 3 个周期◆作为傅里叶分析的对象)。


                  图 2 ANAPF 未投入时电网侧相电压◣波形

                  图 3 ANAPF 未投入时电网侧相电流波【形



                  图 4 ANAPF 未投入时电网侧 A 相电压(左)和相电流波☆形及傅里叶分析←


                  图 4 的傅》里叶分析表明,相电压的畸变非常小,THD 值约有 2.68%,而电流的 THD 值已高达 50.56%,谐波【含量已经很高,可〗以看到其中 5 次、7 次谐波∮幅值较大▓,已分别高达基波幅值的 46%和 23%。亟需ㄨ采取谐波治理措施,以免对其他较敏感负载造成影响〗甚至损毁。
                  由 ANAPF 计算出的补偿电流指令信号▆,因补偿╱电流和谐波电流(以及无▂功电流)幅值相等相位〓相反,所以会相互抵消,从而使得电网电流变卐成只含基波的正弦形状。图 5 和图 6为 ANAPF 投入电网■后电网侧的电压电流波形,与未「投入时的波形图(图 2 和图 3)对比可以发现滤①波效果显著,ANAPF 投入后的电压电流波形≡都十分接近正弦波。



                  图 5 ANAPF 投入后◆电网侧相电压波形



                  图 6 ANAPF 投入后电ぷ网侧相电流波形 


                  图 7 ANAPF 投入后电网 A 相电压(左)和相电流波形及其█傅里叶分析Ψ  


                  图 7 的傅里叶分析√表明,电网侧的电〖压和电流的畸变程度都减小了,尤其是︾电流的 THD值由先前的↘ 50.56%下降至现在的 0.79%;电压的 THD 值现→在约为 0.00%。谐波幅值占基◥波幅值的百分比均小于 1.1%,显然◣电网侧的谐波电压和谐波电流含量都能满足相关限制值的要求。以上结》论表明,安科瑞 ANAPF 系列并联型有源电力【滤波装置对改㊣善电网侧的电∩压和电流有着显著的效果。

                  5、结语
                  目前,有源滤波器已成为电力系︽统治理谐波污染的〖主要发展方向。ANAPF 有源电力※滤波器作为一种特别适合舰船电网谐波治理的优秀方案,正受到广泛关№注。它的使用,较好地抑制了●舰船电网中的谐波污染,极大地※改善了电网的电能质量,完全满足船级社的有关规♀定,在船舶制造★业应用方面将有着广阔的前景。

                  参考文献: 

                  [1] 冯英华,吴旖,杨平西. 综合全电力系统主发电√机谐波损耗分析与算法[ J ]. 船舶工程, 2008, 30 (5) : 12215.
                  [2] 姜齐荣,赵东元,陈建业 .有源电ξ 力滤波器 ——结◤构原理控制[M].北京 : 科学出⊙版社,2005.1-2,20-25.
                  [3] 宋艳琼 .电力推进船舶电网谐波抑制方案的探讨 [J].广州航海高等ㄨ专科学校学报,2009,2(17): 11-14.
                  [4] 马晓军,陈建业,韩英铎,等.单相并联型有源↓滤波器的研究[J]. 清华大学学报: 自然科●学版,1997, 37(7): 39-43.
                  [5] 胡铭,陈珩.有源滤波技术及♀其应用[J]. 电力系统自▃动化,2000,24(3),66-70.



                船舶应用
                船舶应用

                • 1、引言

                  船舶综合全电力推进系统是现行船舶平台的电力和动力两大系Ψ 统发展的综合,它适△合于不同种类的船舶。世界各国都在针对船舶综合全电力推进系统△进行深入的研究,国外已经开发了多种类型的综合@全电力推进系统并在多型船舶上应用。据统计,在 80 年代后期以来,发达国家∞新建的客轮≡、破冰船、渡轮约有 30%已采用综合全电力推【进系统,且成流行趋█势;国内民用船舶中全电力推进的应◆用已有多种∴形式:如江南船◆厂为国外设计建造的 3200 吨全电力推进化学品运输船、胜利∩油田的“胜利 232”号工程船、我国 2006 年交工的首艘采用综合全电Ψ 力推进◤系统的火车滚装渡船“中铁渤海一号”。作为船舶主△动力系统的综合全电力推进系统由于其高〒效率、高可靠性、高自动化以及低维护也成为新世纪大型水面船舶青睐的主推进系统。
                  船舶综合全电力推¤进系统包括:发电、输电、配电、变电、拖动、推进、储能、监控和电力管理等诸,多功能多系统的复杂性也带来了严重的谐波污染问↓题。综合全电ㄨ力推进系统各个功能模块是否运行良好,是否相互协调好,关系着整@ 个综合全电力推进系统是否能具有良好的运行状态和优异的工作性能。

                  2、谐波及波形畸变的产生和危害
                  2.1 谐波来源

                  综合全电力推进系统中产生的谐波来♂源主要有:
                  1) 推进同步发电机。推进同步发电机产生的谐波电动势是▲因转子和定子之间空气隙中的磁场非正弦分布所引起的。推进同步发电机每对磁极下气隙中的磁场不可能完全按正弦分布,这★是由磁极结构所决定的。因此,电动势中必然含有谐波分量。
                  2) 变压器。变压器的励磁回路具有非线性电感,因此,励磁电流是非⌒正弦波形,使得电流波形发生波形畸变。在空载时,非正弦的励磁电流在变压器原绕组的漏抗ζ 上产生压降,使变压器感应电势中包含谐波分⌒ 量。变压∴器空载合闸时,常常会出现很大的励磁涌流。在严重∮的情况下,涌╳流波形强烈畸变,不但幅值可高达数十倍于额定空载电流,而且正负半波的波形极不对称。这种涌流持续时▲间比较长,属☆于准稳定的非正弦波。特征谐波是整流设备产生波形畸变的主要∩成分。由于输「电系统的电压等级高⊙、输送功率大,即使百分数很小的谐波分量也会对低压设备◥及弱电设备产生不可忽视的骚扰。
                  3) 变频器。船舶综合全电力▼推进系统采用变频进行调速,而谐波频率又随频率变化,这样对船舶电网的电源质量影响较大。变频电路︼输入电流的谐波分量十分复杂,其频率不仅和输入电源频率、变频电路的结构有◣关,而且和变频电路的』输出频率有关。
                  在上述Ψ三个谐波源中推进同步发电机为谐波电压源,变压器为谐波¤电流源。对于谐波电流源♀的设备来说,即使供给它们的电压是理想的正弦波,它们所取用的电流中也会含有谐波成分。谐波的含量取决于它们本身╱的特性和工作状ぷ况。谐波电流注入船舶电网后,在』船舶电网系统的阻抗上引起谐波压降,也会使电网系统中各点的◣电压产生波形畸变。

                  2.2 谐波危害

                  谐波是影响电能质量的※重要因素之一,它通常是由电网中的非线性元件产生的。船舶电网中的¤谐波对船舶设备的运行会⊙产生许多不利的影响:
                  1) 使船舶发电机的效率降低;
                  2) 使电气设备←出现过热,振动和噪∑ 音的现象,并产生绝缘老化、使用寿命缩短,甚至发生故障或〓烧毁的结果∞;3)谐波还会引起船舶继电︽保护和自动控制装置的可靠性降低,产生误动作;4)谐波对通信设备和电子设备也╳会产生严重干扰。因此,谐波对于船舶电网是一种电磁环境的污染。

                  微电子设备在船舶←测量、控制、保护、操作等系统中应用广ξ 泛,它对电流波形有较高的要求,易遭▓受谐波干扰。综合全电力推进系统产生的←谐波通过船▲舶电网对船上包括测量、保护、控制、操作等系统中的仪表、仪器和设备造成影♀响。如谐波对计算机的干扰主要是①影响①磁性元件和数据处理系统的精度和性能,从而影响计算机处理数据的质量。谐波对船〓舶照明及生活用电等设备的影响主要表现在增加损◥耗、降低寿命和运行性能劣化。谐波问题日益突出和严重,国内外都Ψ 发生过因谐波而引发的重大船舶事故。特别由于变频驱动的使用,使电动机绝缘①物以及电缆绝缘层迅速老化、甚至烧毁;共模电压在电机转轴上感应出①高的轴电压,并形成轴承放电电流从而电腐蚀轴承,使电机∮在短期内报废;高频传导性和辐卐射性 EMI 使变频驱动系统可靠性下降,故障率增加,并影响︾电网上的其他用电设备。因此,研究变频〓器所带来的负面效应及其解决方法在电力推进系统中具有重要的理论意义和实用价值。

                  3、综合电力推▆进系统谐波限制分析

                  为解决电力电子装置产生的谐波污』染和低功率因数问题,传统的手段是设置无功补偿电容器和 LC 滤波器,这两种方法结构简√单,既可以抑制谐波,又可以补∞偿无功功率,一直被广︽泛应用。但※这种方法的主要缺点是补偿特性受电网阻抗和运行状态影响,易和系统发生并联谐◆振,此外,此种▽补偿方法损耗大,又只能补偿固定频率的谐波,难以对变化的无功功率和谐波进行有效的动态补偿。而随着电力←系统的发展▂,对无功功率和谐波进行快速动态补偿的需求◆越来越大。目前的趋势是采用☉电力电子装置进行谐波补偿,即采用有源滤波器(ActivePower Filter,APF)。

                  3.1 有源滤〗波器的优势
                  有源滤波︾器的主要优点有;

                  1) 有源滤波装置是一个高阻抗电流源,它的接入对系统阻抗不会产生影响,因此此类装置适合系列◣化、规模化◥生产。
                  2) 当电网结构发生变化时装置受电网阻抗①的影响不大,不存在与↑电网阻抗发生谐波的危险,同时还能抑制串并联谐振。
                  3) 原理上比 PPF 更为优越,用【同一台装置可同时补偿多次谐波电流和非整流倍次〖的谐波电流,完成各次谐波的→治理。
                  4) 实现动态补偿,可对频率和大小均』变化的谐波及变化的无功功〓率进行补偿,对补偿对象的变化有极快的响应速度。
                  5) 由于装置本身能完成输出限制,当线路中的谐波△电流突然增大时有源↑滤波器不会发生过载,并且能正常发挥作用,不需要与系●统断开。
                  6) 具备多种补偿】功能,可以对无功功率和负序进行补偿。
                  7) 谐波补偿特性不受电网频率变化的影响。
                  8) 可以对多个谐波源进行集中♂治理。

                  3.2 ANAPF 系列有源电力滤波装置

                  ANAPF 系列有源电力滤波装置作为一种用于动态抑制》谐波、补偿无功的新型电力电╲子装置,它能够对大小和频率都变化的谐波以及变化的无功进行补偿,可克服 LC滤波器等传统的谐〗波抑制和无功补偿方法▼的缺点,实现了动态跟踪补偿,是谐波◥治理和无功补偿的最佳选择,是确保海上平台电力●系统稳定运行的有力保障。

                  3.2.1 工作原理

                  ANAPF 系列有源电力滤波装置,以并ζ 联的方式接入电网,通过实时检测负载的谐波》和无功分量,采用 PWM 变流技术,从变流器中产生一个和当前谐波分量①和无功分量对应的反向分量并实时注入︾电力系统,从而实现谐波治理和无功补偿。(见图 1)


                  图 1 ANAPF 有源电力滤波装置的工作原理图

                  3.2.2 技术参数




                  3.2.3 功能▓模块介绍
                  控制器模块 APFMC-C100
                  主要由:DSP(数字信号处理器)、FPGA 逻辑器件、AD 信号采样电路、DI/DO 输入输出控制●电路、PWM 波形控制电▃路、RS485 通讯电路等组成,主要用来∞完成电压、电流等信号的采集和处∏理、指令电流的计算、开关电路的生成、PWM 信@号的输出、系︻统对外通讯与系统保护等功能。控制系统是有源滤波器的核心,它决定了有源电力滤波器◣系统的主要性★能和指标。
                  变流器模块 APFCOV
                  其核心是储能电容和 IGBT 模块。变流器的作♂用主要是将电网的电压经 IGBT 功率模块整流后为储能电容充ω 电,使母线电压维持在某个稳定的值,在这个过程中变流器¤主要工作在整流状态,当主电路产生①补偿电流时,变流器又工作在№逆变状态。考虑到产品是在电网中长时间运行的,因此直流支々撑电容采用薄膜电容,功率模块∑采用德国原装产品,以确保整机质量。变流器的选择根据补偿Ψ电流的大小而有■所不同。
                  电抗器模块 APF-RE.DG、APF-RE.SDG
                  APF 电抗器起滤波作用,滤除 APF 发出的电网№不需要的谐波。电抗器可〇分为单相和三相,电流从 15A 到 200A 等多种规格。
                  人机操作界面 APF-HMI
                  APF 柜在工〒作时○,系统∑可以监测其网侧电流、APF 桥臂电流以及负载侧电流,用户可以通☆过 HMI 来对 APF 的运♂行模式进行设置,对于运行中出现的问题,可以产生对应的事件记录。HMI 就是我司针对⊙电力系统,工矿企业,公用设施,智能大厦的▽电力监控需求而设计的一种智能仪表,它采用高亮度 TFT-LCD 彩屏显◢示界面,通过∏面板按键来实现参数设置和控制,集成全部电力参数的测量、全面的电能计量和考⌒核管理、多种电力质量参数∞的分析。
                  配套的电流采样互感器 AKH-0.66-K

                  3.2.4 技术优势

                  DSP+FPGA 全数字控制方式,具有极快的响应☆时间;先进的主电路○拓扑和控制算法,精度更高、运行更稳定;一机多能,既可补谐波◥∏,又可兼补『无功;模块化设计,便于生产调试;
                  便利的并联设█计,方便扩容;
                  具有完善◣的桥臂过流、保护功能;
                  使用方便,易于操作和维护。

                  3.2.5 有源滤波器报价及元件清单



                  4、ANAPF 有源电力滤波装置@ 的应用实例
                  本文以某实际大型旅游客轮的综合电力推进系统为例,其〓基本参数如下


                  该船的电力系统主要分↑两大部分:6600V 中压电网和 440V 低压电网。4 台主发电机◇为6600V 主电网供ξ电,主推进电机和侧推器为其主要负载;440 主电网通过卐变压器接在 6600V电网上,其负载∮包括主推进电机励磁系统、舵机、酒店电力服↓务系统以及其他辅助设备等。
                  当 ANAPF 未投入电网时,电网侧和负载侧的电压电流是完全◥相同的,所以下面仅列出了电网侧♀的相电压和相电流。
                  图 2 和图 3 表明,ANAPF 未投↓入时电网侧相电压几乎没有发生畸变,但相电流的波形畸变十分严重。下面是↘分别对电网侧 A 相相电压和相电流的傅里叶分▂析,对畸变程度进行量化(0.02s 后的 3 个周期作为傅里叶分析的对象)。


                  图 2 ANAPF 未投入时电网侧相电压波●形

                  图 3 ANAPF 未投入时电网侧相电流波形



                  图 4 ANAPF 未投入时电网侧 A 相电压(左)和相电流波形√及傅里叶分析


                  图 4 的傅里叶分◎析表明,相电压的畸变非常小,THD 值约有 2.68%,而电流的 THD 值已高达 50.56%,谐波含量ζ已经很高,可以看到其※中 5 次、7 次谐波幅值较大,已分别高达基波幅值的 46%和 23%。亟需采取谐波治▆理措施,以免对其他较敏感负载造成〓影响甚至损毁。
                  由 ANAPF 计算出的补偿电流指令信号,因补▽偿电流和谐波电流(以↑及无功电流)幅值相等相位相反,所以会相互抵消,从而使得电网√电流变成只含基波的正弦形状。图 5 和图 6为 ANAPF 投入ξ 电网后电网侧的电压电流波形,与未投入时的卐波形图(图 2 和图 3)对比可以发现滤波效果显著,ANAPF 投入后的电压【电流波形都十分接近正弦波。



                  图 5 ANAPF 投入后电网侧相电压波形



                  图 6 ANAPF 投入后电网侧相电流波形 


                  图 7 ANAPF 投入后电网 A 相电压(左)和相电流●波形及其傅里叶分析 


                  图 7 的傅里叶分析表明,电网侧的电压和电流的畸变程度都减小了,尤其是电☉流的 THD值由先前的 50.56%下降至现在的 0.79%;电压的 THD 值现在◣约为 0.00%。谐波幅值占基波幅值的百分比ぷ均小于 1.1%,显然〖电网侧的谐波电压和谐波电流含量都能满足相关限制值的要求。以上结论表明,安科瑞 ANAPF 系列并联型有源电力滤ω波装置对改善电网侧的电压和电流有着显著的效果。

                  5、结语
                  目前,有源滤波器已成为电力系统治理谐波污染的主要↑发展方向。ANAPF 有源电力滤波器↙作为一种特别适合舰船电网谐波治理的优秀方案,正受※到广泛关注。它的使用,较好地抑制了舰船电网中的♀谐波污染,极大地改善了电网的电能质量,完全满足船级社的有关规定,在船舶制造业应用方面将〓有着广阔的前景。

                  参考文献: 

                  [1] 冯英华,吴旖,杨平西. 综合全电力系统主发电机谐波损耗分析与算法[ J ]. 船舶工程, 2008, 30 (5) : 12215.
                  [2] 姜齐荣,赵东元,陈建业 .有源电力滤波器 ——结构原理〒控制[M].北京 : 科学出版社,2005.1-2,20-25.
                  [3] 宋艳琼 .电力推进船舶电网谐波抑制方案的探讨 [J].广州↑航海高等专科学校学报,2009,2(17): 11-14.
                  [4] 马晓军,陈建业,韩英铎,等.单相并联型ζ有源滤波器的研究[J]. 清华大学学报: 自然科学版,1997, 37(7): 39-43.
                  [5] 胡铭,陈珩.有源滤波技术及其№应用[J]. 电力系统自动化,2000,24(3),66-70.



                船舶应用
                船舶应用

                • 1、引言

                  船舶综合全电力推进系统是现行船舶平台的电力和动力两大系统发ζ 展的综合,它适合于不同种∩类的船舶。世界各国都在针对船舶综合全电力推进系统进行深入的研究,国外已经开发了多种类◣型的综合全电力推进系统并在多型船舶上应用。据统计,在 80 年代后期以来,发达国家新建㊣的客轮、破冰船、渡轮约有 30%已采用综合全电力推进系统,且成流行趋势;国内民用船舶中全电力推进的应用已有多种形●式:如江南船厂为国外设计建造的 3200 吨全电力推进化学品运输船、胜利油田的“胜利 232”号工程船、我国 2006 年交工的首艘采用综合→全电力推进系统的火车滚装渡船“中铁渤海一号”。作为ㄨ船舶主动力系统的综合全电力推进系统由于其高效↑率、高可靠性、高自动化以及低维护也成为新世纪大型水面船舶青睐的主推进系统。
                  船※舶综合全电力推进系统包括:发电、输电、配电、变电、拖动、推进、储能、监控和电力管理等诸,多功能多系统的复杂性也带来了严重的谐波ω 污染问题。综合全电力推进系统各个功能★模块是否运行良好,是否相互协调好,关系着整个综合全电力推进▓系统是否能具有良好的运行状态和优异的工作性能。

                  2、谐波及波形畸变的产生和危害
                  2.1 谐波来源

                  综合全电力推进系统中产生的谐波来源主要↘有:
                  1) 推进同步发电机。推进同步发电机产生的谐波电动势是因转子和定子Ψ之间空气隙中的磁场非正弦分布所引起的。推进同步发电机每对磁极下气隙中的磁场不可能完全按正弦分布,这是由ㄨ磁极结构所决定的。因此,电动势中必然含有谐波分量。
                  2) 变压器。变压器的励磁回路具有非线性电感,因此,励磁电流是非正⊙弦波形,使得电流波形发生波形畸变。在空载时,非正弦的励磁电流在变压器原绕组的漏抗上产生压降,使变压器感应电〓势中包含谐波分量。变压器空载合闸时,常常会出现很大的励磁涌流。在严重的︾情况下,涌流波形强烈畸变△,不但幅值可高达数十倍于额定空载电流,而且正负半波的波形极不对称。这种◥涌流持续时间比较长,属于准稳定的非正弦波。特征谐波是整流设备产生波形畸变的主要成→分。由于输电〓系统的电压等级高、输送功率大,即使百分数很小的谐波分量也会对低压设备及弱々电设备产生不可忽视的骚扰。
                  3) 变频器。船舶综合全电力推进系统采用变频进行调速,而谐波频率又随频率变化,这样对船舶电网的电源质量影响较大。变频电路输入★电流的谐波分量十分复杂,其频率不仅和输入电源频率、变频电路的结构有关,而且和变频电路的输出频率有关。
                  在上述三个谐波源中推进同步发电机为谐波电压源,变压器为谐波电流源。对于谐波电流源〖的设备来说,即使供给它们的电压是理想的正弦波,它们所取用的电流中也会含有谐波成分。谐波的含量取决于它们本□身的特性和工↘作状况。谐波电流注入船舶电网后,在船舶电网系统的阻抗上引起◇谐波压降,也会使电网系统⌒中各点的电压产生波形畸变。

                  2.2 谐波危害

                  谐波是影响电能质量的重要因素之一,它通常是由电网中的非线性元件产生的。船舶电网中的谐波对船舶设♂备的运行会产生许多☆不利的影响:
                  1) 使船舶发电机的效率降低;
                  2) 使电气设备出现过热,振动和噪音的☆现象,并产生绝缘老化、使用寿命缩短,甚至发生故障或烧毁的结果;3)谐波还会引起船舶继电保护╲和自动控制装置的可靠性降低,产生误动作;4)谐波对通信※设备和电子设备也会产生严重干扰。因此,谐波对于船舶电网是一种电磁环境的污染。

                  微电子□ 设备在船舶测量、控制、保护、操作等系统中应用♂广泛,它对电流波形有较高的要求,易遭受谐波干』扰。综合全电力推进系统☆产生的谐波通过船舶电网对船上包括Ψ 测量、保护、控制、操作等系统中的仪表、仪器和设备◤造成影响㊣。如谐波对计算机的干扰主要是影响磁性元件和数据处理系统的精度和性能,从而影响计算机处理数据的质量。谐波对船舶照明及生活用电↘等设备的影响主要表╱现在增加损耗、降低寿命和运行性能劣化。谐波问题日益突出和严重,国内外都发生过因谐波而』引发的重大船舶事故。特别由于变频驱动的使用,使电动机绝缘物〖以及电缆绝缘层迅速老化、甚至烧毁;共模电压在电机转轴上感应出高的轴电压,并形成轴承放电电流从而电腐蚀轴承,使电√机在短期内报废;高频传导性和辐射ξ性 EMI 使变频驱动系统可靠性下降,故障率增加,并▓影响电网上的其他用电设备。因此,研究变频@ 器所带来的负面效应及其解决方法在电力推进系统中具有重要的理论意义和实用价值。

                  3、综合电力推进系统谐波限制分△析

                  为解决电力电子装置产生的谐波污染和低功率因数问题,传统的手段是设置无功补偿电容器和 LC 滤波器,这两种方←法结构简单,既可以抑制谐波,又可以补偿无功功率,一直被↓广泛应用。但这种方法的主要缺点是补偿特性受电网阻抗和运行状态影响,易和系『统发生并联谐振,此外,此种补偿方法ㄨ损耗大,又只能补偿固定频率的谐波,难以对变化的无功功率和谐波进行有效的动态补偿。而随着电力系统的发展,对无功功率和谐波进行快速动态补偿的㊣ 需求越来越大。目前的趋势》是采用电力电子装置进行谐波补偿,即采用有源滤波器(ActivePower Filter,APF)。

                  3.1 有源滤波器的优势
                  有源滤波器的主△要优点有;

                  1) 有源滤波装置是一个高阻抗电流源,它的接入对系统阻抗不会产生影响,因此此类装置♀适合系列化、规模化生产。
                  2) 当电网结构发生变化时装置受电网阻抗的影响Ψ 不大,不存在与电☉网阻抗发生谐波的危险,同时还能抑制串并联谐振。
                  3) 原理上比 PPF 更为优越,用同一台装置可同时补偿多次谐波电流和㊣ 非整流倍次的谐波电流,完成各次谐☉波的治理。
                  4) 实现动态补偿,可对频率和大小均变化的谐波≡及变化的无功功∩率进行补偿,对补偿对象的变化有极快的响应速度。
                  5) 由于装置本身能完成输出限制,当线路中的谐波电流突然增◆大时有源滤波器不会发生过载,并且能正常发挥作用,不需要与系统断◤开。
                  6) 具备多种补偿※功能,可以对无功功率和负序进行补偿。
                  7) 谐波补偿特性不受电网频率变化的影响。
                  8) 可以对ㄨ多个谐波源进行集中治理。

                  3.2 ANAPF 系列有源电力滤波装置

                  ANAPF 系列有源电力滤波装置作为一种用于动态抑制谐波、补偿无功的新型电力电子♀装置,它能够对大小和频率都变化的谐波以及变化的无功进行补偿,可克服 LC滤波器等传统的谐波抑制和无︽功补偿方法的↙缺点,实现了动态跟踪补偿,是谐波治理和无功补偿的最佳◤选择,是确保海上平台电力◣系统稳定运行♀的有力保障。

                  3.2.1 工作原理

                  ANAPF 系列有源电力滤波装置,以并联的方式接入电〓网,通过实时检测负载的谐波和无♂功分量,采用 PWM 变流技术,从变流器中产生一个和当前谐波分量和无功分量对应的反向分量并实时注入电力系︻统,从而实现谐波治理和无功补偿。(见图 1)


                  图 1 ANAPF 有源电力滤波装置的工作原理图

                  3.2.2 技术参数




                  3.2.3 功能模块介∩绍
                  控制器模块 APFMC-C100
                  主要由:DSP(数字信号处理器)、FPGA 逻辑器件、AD 信号采样电路、DI/DO 输入╱输出控制电路、PWM 波形控制电路、RS485 通讯电路等组成,主要ζ 用来完成电压、电流等信号的采集和处理、指令电流的计算、开关电路的生成、PWM 信①号的输出、系统对⊙外通讯与系统保护等功能。控制系统是有源滤波器的核心,它决定了※有源电力滤波器系统的主要性能』和指标。
                  变流器模块 APFCOV
                  其核心是储能电容和 IGBT 模块。变流器的作用主要是将」电网的电压经 IGBT 功率模块整流后为储〒能电容充电,使母线电压维持在某个稳定的值,在这个过程中变流器主要工作在整流状态,当主ω 电路产生补偿电流时※,变流器又工作在逆★变状态。考虑到产品是在电网中长时间运行的,因此直流」支撑电容采用薄膜电容,功率模块采用德国原装产〒品,以确保整机质量。变流器的选择根据补偿电流的大小而有※所不同。
                  电抗器模块 APF-RE.DG、APF-RE.SDG
                  APF 电抗器起滤波作用,滤除 APF 发出的电网不需ω 要的谐波。电抗器可№分为单相和三相,电流从 15A 到 200A 等多种规格。
                  人机操作界面 APF-HMI
                  APF 柜在工@作时∏,系统可以监测其网侧电流、APF 桥臂电流以及负载侧电流,用户可以∏通过 HMI 来对 APF 的运行模式进↓行设置,对于运行中出现的问题,可以产生对应的事件记录。HMI 就是︻我司针对电力系统,工矿企业,公用设施,智能大厦∴的电力监控需求而设计的一种智能仪表,它采用高亮度 TFT-LCD 彩屏☆显示界面,通过面板按键来实现参数设置和控制,集成全部电力参数的测量、全面的电能计量和考核∞管理、多种电力质量▓参数的分析。
                  配套的电流采样互感器 AKH-0.66-K

                  3.2.4 技术优势

                  DSP+FPGA 全数字控制方式,具有♂极快的响应时间;先进的主电路拓扑和控制算法,精度更高、运行更稳定;一机多能,既可补谐波,又︼可兼补无功;模块化设计,便于生产调试;
                  便利的↓并联设计,方便扩容;
                  具有完善的桥臂过↘流、保护功能;
                  使用方便,易于操作和维护。

                  3.2.5 有源滤波器报价及元件清单



                  4、ANAPF 有源电力滤波∮装置的应用实例
                  本文以某实际大型旅游客轮的综合电力推进系统为例,其基本参数如□下


                  该■船的电力系统主要分两大部分:6600V 中压电网和 440V 低压电网。4 台主▅发电机为6600V 主电网供Ψ电,主推进电机和侧推器为其主要负载;440 主电网通过变压器接在 6600V电网上,其负载包括主推进电▼机励磁系统、舵机、酒店电力服务系统以及其他辅卐助设备等。
                  当 ANAPF 未投入电网时,电网侧和负载侧的电压电流是完全相同的,所以下面仅列出了电网侧的相¤电压和相电流。
                  图 2 和图 3 表明,ANAPF 未投入时电网侧相电压几乎没有发生畸变,但相电流的波形畸变十分严重。下面是分别对电〓网侧 A 相相电压和相电流∞的傅里叶分析,对畸变程度进行量化(0.02s 后的 3 个周期作为傅里叶分析的对象)。


                  图 2 ANAPF 未投○入时电网侧相电压波形

                  图 3 ANAPF 未投入时电网侧相电流波形



                  图 4 ANAPF 未投入时电网侧 A 相电压(左)和相电流波形及傅里叶分析


                  图 4 的傅里叶分析表明,相电压的畸变非常小,THD 值约有 2.68%,而电流的 THD 值已高达 50.56%,谐波含量已经很高,可以〓看到其中 5 次、7 次谐波幅值较大,已分别高达基波幅值的 46%和 23%。亟需采取谐波治理□ 措施,以免对其他较敏々感负载造成影响甚至损毁。
                  由 ANAPF 计算出的补偿电流指令信号,因补偿电流和谐波电流(以及无→功电流)幅值相等相位相反,所以会相互抵消,从而使得电网电流变成只含基波的正弦形状。图 5 和图 6为 ANAPF 投入电网后电网侧的电压电流波形〇,与未投入时的波形图(图 2 和图 3)对比可以发现滤波效果显著,ANAPF 投入后的∮电压电流波形都十分接近正弦波。



                  图 5 ANAPF 投入后电网侧相电压波形



                  图 6 ANAPF 投入后电网侧相电流波形 


                  图 7 ANAPF 投入后电网 A 相电压(左)和相电■流波形及其傅里叶分析 


                  图 7 的傅里叶分析表明,电网侧的电压和电流的畸变程度都减小了,尤其╱是电流的 THD值由先前的 50.56%下降至现在的 0.79%;电压的 THD 值现在约为 0.00%。谐波幅值占基波幅值卐的百分比均小于 1.1%,显然电网侧的谐波电压和谐波电流含量都能满足相关限制值的要求。以上结论表明,安科瑞 ANAPF 系列并√联型有源电力滤波装置对改善电网侧的电压和电流有着显著的效果。

                  5、结语
                  目前,有源滤波器已成为电力系统治理谐波污染的主要◇发展方向。ANAPF 有源电力滤★波器作为一种特别适合舰船电网谐波治理的优秀方案,正受到广泛关注。它的使用,较好地抑制ζ了舰船电网中的谐波污染,极大地改善了电网的电能质量,完全满足船级社的有关规定,在船舶制造业应用方》面将有着广阔的前景。

                  参考文献: 

                  [1] 冯英华,吴旖,杨平西. 综合全电力系统主发电机谐波损耗分析与算法[ J ]. 船舶工程, 2008, 30 (5) : 12215.
                  [2] 姜齐荣,赵东元,陈建业 .有源电力滤波器 ——结√构原理控制[M].北京 : 科学出版社,2005.1-2,20-25.
                  [3] 宋艳琼 .电力推进船舶电网谐波抑制方案的探讨 [J].广州航海高等专科学︽校学报,2009,2(17): 11-14.
                  [4] 马晓军,陈建业,韩英铎,等.单相并联型有源滤波器的研究[J]. 清华大学学报: 自然科学版,1997, 37(7): 39-43.
                  [5] 胡铭,陈珩.有源滤波◆技术及其应用[J]. 电力系统自动化,2000,24(3),66-70.



                船舶应用
                船舶应用

                • 1、引言

                  船舶综合全电力推进系统是现行船舶平台的电力和动力两大系统发』展的综合,它适合于不同种类〗的船舶。世界各国都在针对船舶综合全电力推进系统进行深入的研究,国外已经开发了多∩种类型的综合全电力推进系统并在多型船舶上应用。据统计,在 80 年代后期以来,发达国家新建〖的客轮、破冰船、渡轮约有 30%已采用综合全电力推进系统,且成流行趋势;国内民用船舶中全电力推进的应用已有多种形●式:如江南船厂为国外设计建造的 3200 吨全电力推进化学品运输船、胜利油田的“胜利 232”号工程船、我国 2006 年交工的首艘采用综合全电力推进∏系统的火车滚装渡船“中铁渤海一号”。作为船舶主动力系统的综合全电力推进系统由于其高效率、高可靠性、高自动化以及低维护也成为新世纪大型水面船舶青睐的主推进系统。
                  船舶综合全电力推进系统▅包括:发电、输电、配电、变电、拖动、推进、储能、监控和电力管理等诸,多功能多系统的复杂性也带来了严重的谐波污染】问题。综合全电力推〓进系统各个功能模块是否运行良好,是否相互协调好,关系着整¤个综合全电力推进系统是否能具有良好的运行状态和优异的工作性能。

                  2、谐波及波形畸变的产生和危害
                  2.1 谐波来源

                  综合全电力推进系统中产生的谐波来源□主要有:
                  1) 推进同步发电机。推进同步发电机产生的谐波电动势是因转子和定子之间空气隙中的磁场非正弦分布所引起的。推进同步发电机每对磁极下气隙中的磁场不可能完全按正弦分布,这是¤由磁极结构所决定的。因此,电动势中必然含有谐波分量。
                  2) 变压器。变压器的励磁回路具有非线性电感,因此,励磁电流是非正◢弦波形,使得电流波形发生波形畸变。在空载时,非正弦的励磁电流在变压器原绕组的漏抗上产生压降,使变压器感应电▃势中包含谐波分量∞。变压器空载合闸时,常常会出现很大的励磁涌流。在严重⊙的情况下,涌流波形强烈畸变,不但幅值可高达数十倍于额定空载电流,而且正负半波的波形极不对称。这种涌流持续时★间比较长,属于准稳定的非正弦波。特征谐波是整流设备产生波形畸变的主Ψ要成分。由于输电系统的︻电压等级高、输送功率大,即使百分数很小的谐波分量也会对低压设备及弱电设∴备产生不可忽视的骚扰。
                  3) 变频器。船舶综合全电力推进系统采用变频进行调速,而谐波频率又随频率变化,这样对船舶电网的电源质量影响较大。变频电路输入电流的谐波分量十分复杂,其频率不仅和输入电源频率、变频电路的结构有关,而且和变频电路的输出频率有关。
                  在上述三个谐波源中推进同步发电机为谐波电压源,变压器为谐波电流源。对于谐波电流源的设备来说,即使供给它们的电压是理想的正弦波,它们所取用的电流中也会含有谐波成分。谐波的含量取决于它们本身的特性和工作状况。谐波电流注入船舶电网后,在船舶电网系统的阻抗上引起谐波压降,也会使电网★系统中各点的电压产生波形畸变。

                  2.2 谐波危害

                  谐波是影响电能质量的重要因素之一,它通常是由电网中的非线性元件产生的。船舶电网中的∴谐波对船舶设备的运行会产生许多不利的影⌒响:
                  1) 使船舶发电机的效率降低;
                  2) 使电气设备出现过热,振动和噪音的◤现象,并产生绝缘老化、使用寿命缩短,甚至发生故障或烧毁的结果;3)谐波还会引起船舶继@电保护和自动控制装置的可靠性降低,产生误动作;4)谐波对通信设备和电子设备也会产生严重干扰。因此,谐波对于船舶电网是一种电磁环境的污染。

                  微电子设备在船舶测量、控制、保护、操作々等系统中应用广泛,它对电流波形有较高的要求,易遭受谐波干扰。综∏合全电力推进系统产生的谐波通过船舶电网对船上包括测量、保护、控制、操作等系统中的仪表、仪器卐和设备造成影响。如谐波对计算机的干扰主要是影响磁性元件和数据处理系统的精度和性能,从而影响计算机处理数据的质量。谐波对船舶照明及生活用电等设■备的影响主要表现在增加损耗、降低寿命和运行性能劣化。谐波问题日益突出和严重,国内㊣ 外都发生过因谐波而引发的重大船舶事故。特别由于变频驱动的使用,使电动机绝缘物以及电缆绝缘』层迅速老化、甚至烧毁;共模电压在电机转轴上感应出高的轴电压,并形成轴承放电电流从而电腐蚀轴承,使电机在短▼期内报废;高频传导性和辐射性 EMI 使变频驱动系统可靠性下降,故障率增加,并影响电网∏上的其他用电设备。因此,研究变频器所带来的负面效应及其解决方法在电力推进系统中具有重要的理论意义和实用价值。

                  3、综合电【力推进系统谐波限制分析

                  为解决电力电子装置产生的谐波污染和低功率因数问题,传统的手段是设置无功补偿电容器和 LC 滤波器,这两种方〗法结构简单,既可以抑制谐波,又可以补偿无功功率,一直被广∮泛应用。但这种方法的主要缺点是补偿特性受电网阻抗和运行状态影响,易和系统发生并联谐振,此外,此▓种补偿方法损耗大,又只能补偿固定频率的谐波,难以对变化的无功功率和谐波进行有效的动态补偿。而随着电力系统的发展,对无功功率和谐波进行快速动态补偿的需求越来越大。目前的趋♀势是采用电力电子装置进行谐波补偿,即采用有源滤波器(ActivePower Filter,APF)。

                  3.1 有源滤波器的优势
                  有源滤波器的主要优点有;

                  1) 有源滤波装置是一个高阻抗电流源,它的接入对系统阻抗不会产生影响,因此此类装置适合◎系列化、规模化生产。
                  2) 当电网结构发生变化时装置受电网阻抗的影响〇不大,不存在与电网阻抗发生谐♀波的危险,同时还能抑制串并联谐振。
                  3) 原理上比 PPF 更为优越,用同一台装置可同时补偿多次谐波电流和非整流倍次的谐波电╱流,完成各次【谐波的治理。
                  4) 实现动态补偿,可对频率和大小均变化的谐波及变化的无功功〗率进行补偿,对补偿对象的变化有极快的响应速度。
                  5) 由于装置本身能完成输出限制,当线路中的谐波电流突↙然增大时有源滤波器不会发生过载,并且能正常发挥作用,不需要与系统♀断开。
                  6) 具备多种补偿功能,可以对无功功率和负序进行补偿。
                  7) 谐波补偿特性不受电网频率变化的影响。
                  8) 可以对多个谐波源进行集中治理】。

                  3.2 ANAPF 系列有源电力滤波装置

                  ANAPF 系列有源电力滤波装置作为一种用于动态抑制谐波、补偿无功的新型电力电子装置,它能够对大小和频率都变化的谐波以及变化的无功进行补偿,可克服 LC滤波器等传统的谐波抑制和◇无功补偿方法的缺点,实现了动态跟踪补偿,是谐波治理和无功补偿的最佳选择,是确保海上平台电力系统稳定运行的有力保障。

                  3.2.1 工作原理

                  ANAPF 系列有源电力滤波装置,以并联≡的方式接入电网,通过实时检测负载的谐波和无功分】量,采用 PWM 变流技术,从变流器中产生一个和当前谐波分量和无功分量对应的反向分量并实时注⊙入电力系统,从而实现谐波治理和无功补偿。(见图 1)


                  图 1 ANAPF 有源电力滤波装置的工作原理图

                  3.2.2 技术参数




                  3.2.3 功能模→块介绍
                  控制器模块 APFMC-C100
                  主要由:DSP(数字信号处理器)、FPGA 逻辑器件、AD 信号采样电路、DI/DO 输入输出控制电路、PWM 波形控制电路、RS485 通讯电路等组成,主要用来完成电压、电流等信号的采集和处理、指令电流的计算、开关电路的生成、PWM 信号的输出、系统对外通讯与系统保护等功能。控制系统是有源滤波器的核心,它决定了有源电力滤波器系统的主要性能№和指标。
                  变流器模块 APFCOV
                  其核心是储能电容和 IGBT 模块。变□流器的作用主要是将电网的电压经 IGBT 功率模块」整流后为储能电容充电,使母线电压维持在某个稳定的值,在这个过程中变流器主要工作在整流状态,当主电路产生补偿电流时,变流器¤又工作在逆变状态。考虑到产品是在电网中长时间运行的,因此直流支撑︼电容采用薄膜电容,功率模块采用德国原装产品,以确保整机质量。变流器的选择根据补偿电流的大小而▅有所不同。
                  电抗器模块 APF-RE.DG、APF-RE.SDG
                  APF 电抗器起滤波作用,滤除 APF 发出的电网不需」要的谐波。电抗器可分为单相和三相,电流从 15A 到 200A 等多种规格。
                  人机操作界面 APF-HMI
                  APF 柜在工作时,系统可以监测其网侧电流、APF 桥臂电流以及负载侧电流,用户可以通过 HMI 来对 APF 的运∞行模式进行设置,对于运行中出现的问题,可以产生对应的事件记录。HMI 就是我司针对电力⊙系统,工矿企业,公用设施,智能大厦的◤电力监控需求而设计的一种智能仪表,它采用高亮度 TFT-LCD 彩屏显】示界面,通过面板按键来实现参数设置和控制,集成全部电力参数的测量、全面的电能「计量和考核管理、多种电力质量参数的╳分析。
                  配套的电流采样互感器 AKH-0.66-K

                  3.2.4 技术优势

                  DSP+FPGA 全数字控制方式,具有极快的」响应时间;先进的主电路拓扑和控制算法,精度更高、运行更稳定;一机多能,既可补谐波,又可兼补无功△;模块化设计,便于生产调试;
                  便利的并联设▲计,方便扩容;
                  具有完善的桥臂过流、保护功能;
                  使用方便,易于操作和维护。

                  3.2.5 有源滤波器报价及元件清单



                  4、ANAPF 有源电力滤波装置的应〖用实例
                  本文以某实际大型旅游客轮的综合电力推进系统为例,其基本参々数如下


                  该船的电力系统主要分两大部分:6600V 中压电网和 440V 低压电网。4 台主发电机为6600V 主电◥网供电,主推进电机和侧推器为其主要负载;440 主电网通过变压器接在 6600V电网上,其负载包括主推进电机励磁系①统、舵机、酒店电∞力服务系统以及其他辅助设备等。
                  当 ANAPF 未投入电网时,电网侧和负载侧的电压电流是完全相同的,所以下面仅列出了电网侧的相电←压和相电流。
                  图 2 和图 3 表明,ANAPF 未投入时电网侧相电压几乎没有发生畸变,但相电流的波形畸变十分严重。下面是分别对电网▓侧 A 相相电压和相电流的傅里叶分析,对畸变程度进行量化(0.02s 后的 3 个周期作为傅里叶分析的对象)。


                  图 2 ANAPF 未投入时电网侧相电▽压波形

                  图 3 ANAPF 未投入时电网侧相电流波形



                  图 4 ANAPF 未投入时电网侧 A 相电压(左)和相电流波形及傅里叶分析


                  图 4 的傅里叶分析表明,相电压的畸变非常小,THD 值约有 2.68%,而电流的 THD 值已高达 50.56%,谐波含量已经很高,可︽以看到其中 5 次、7 次谐波幅值较大,已分别高达基波幅值的 46%和 23%。亟需采取谐波治理措施,以免▓对其他较敏感负载造成影响甚至损毁。
                  由 ANAPF 计算出的补偿电流指令信号,因补偿电流和谐波电流(以及无功①电流)幅值相等相位相反,所以会相互抵消,从而使得电网电流变成只含基波的正弦形状。图 5 和图 6为 ANAPF 投入电网后电网侧的电压电流波形,与未投入时的波形图(图 2 和图 3)对比可以发现滤波效果显著,ANAPF 投入后的电压电流波形ω都十分接近正弦波。



                  图 5 ANAPF 投入后电网侧相电压波形



                  图 6 ANAPF 投入后电网侧相电流波形 


                  图 7 ANAPF 投入后电网 A 相电压(左)和相电流波形及其傅里叶分析 


                  图 7 的傅里叶分析表明,电网侧的电压和电流的畸变程度都减小了,尤其是』电流的 THD值由先前的 50.56%下降至现在的 0.79%;电压的 THD 值现在约为 0.00%。谐波幅值占基∩波幅值的百分比均小于 1.1%,显然电网侧的谐波电压和谐波电流含量都能满足相关限制值的要求。以上结论表明,安科瑞 ANAPF 系列并联型有源电力滤波装置对改善电网侧的电压和电流有着显著的效果。

                  5、结语
                  目前,有源滤波器已成为电力系统治理谐波污ζ染的主要发展方向。ANAPF 有源电力滤波器作为一种特别适合舰船电网谐波治理的优秀方案,正受到广泛关注。它的使用,较好地抑制了舰船电网中的谐波〗污染,极大地改善了电网的电能质量,完全满足船级社的有关规定,在船舶制造业应用方面将有着广『阔的前景。

                  参考文献: 

                  [1] 冯英华,吴旖,杨平西. 综合全电力系统主发电机谐波损耗分析与算法[ J ]. 船舶工程, 2008, 30 (5) : 12215.
                  [2] 姜齐荣,赵东元,陈建业 .有源电力滤波器 ——结构原理控㊣制[M].北京 : 科学出版社,2005.1-2,20-25.
                  [3] 宋艳琼 .电力推进船舶电网谐波抑制方案的探讨 [J].广州航海高等专科学校学报,2009,2(17): 11-14.
                  [4] 马晓军,陈建业,韩英铎,等.单相并联型有源滤波器的研究[J]. 清华大学学报: 自然科学版,1997, 37(7): 39-43.
                  [5] 胡铭,陈珩.有源滤波技术及→其应用[J]. 电力系统自动化,2000,24(3),66-70.



                船舶应用
                船舶应用

                • 1、引言

                  船舶综合全电力推进系统是现行船舶平台的电力和动力两大系统发展的综合,它适合于不同种类的船舶。世界各国都在针对船舶综合全电力推进系统进行深入的研究,国外已经开发了多种类型的综①合全电力推进系统并在多型船舶上应用。据统计,在 80 年代后期以来,发达国家新建的客轮、破冰船、渡轮约有 30%已采用综合全电力推进系统,且成流行趋势;国内民用船舶中全电力推进的应用已有多种形式:如江南船厂为国外设计建造的 3200 吨全电力推进化学品运输船、胜利油田的“胜利 232”号工程船、我国 2006 年交工的首艘采用综合全电力推进系统的火车滚装渡船“中铁渤海一号”。作为船舶主动力系统的综合全电力推进系统由于其高效率、高可靠性、高自动化以及低维护也成为新世纪大型水面船舶青睐的主推进系统。
                  船舶综合全电力推∑进系统包括:发电、输电、配电、变电、拖动、推进、储能、监控和电力管理等诸,多功能多系统的复杂性也带来了严重的谐波污染问※题。综合全电力推进系统各个功能模块是否运行良好,是否相互协调好,关系着整个综合全电力推进※系统是否能具有良好的运行状态和优异的工作性能。

                  2、谐波及波形畸变的产生和危害
                  2.1 谐波来源

                  综合全电力推进系统中产生的谐波来源主要有:
                  1) 推进同步发电机。推进同步发电机产生的谐波电动势是因转子和定子之间空气隙中的磁场非正弦分布所引起的。推进同步发电机每对磁极下气隙中的磁场不可能完全按正弦分布,这是→由磁极结构所决定的。因此,电动势中必然含有谐波分量。
                  2) 变压器。变压器的励磁回路具有非线性电感,因此,励磁电流〓是非正弦波形,使得电流波形发生波形畸变。在空载时,非正弦的励磁电流在变压器原绕组的漏抗上产生压降,使变压器感应电势中包含谐波分量。变压器空载合闸时,常常会出现很大的励磁涌流。在严重的情况下,涌流波形强烈畸变,不但幅值可高达数十倍于额定空载电流,而且正负半波的波形极不对称。这种涌流持续时间比较长,属于准稳定的非正弦波。特征谐波是整流设备产生波形畸变的主要成分。由于输电系统的电压等级高、输送功率大,即使百分数很小的谐波分量也会对低压设备及弱电设备●产生不可忽视的骚扰。
                  3) 变频器。船舶综合全电力推进系统采用变频进行调速,而谐波频率又随频率变化,这样对船舶电网的电源质量影响较大。变频电路输入电流的谐波分量十分复杂,其频率不仅和输入电源频率、变频电路的结构有关,而且和变频电路的输出频率有关。
                  在上述三个谐波源中推进同步发电机为谐波电压源,变压器为谐波电流源。对于谐波电流源的设备来说,即使供给它们的电压是理想的正弦波,它们所取用的电流中也会含有谐波成分。谐波的含量取决于它们本身的特性和工作状况。谐波电流注入船舶电网后,在船舶电网系统的阻抗上引起谐波压降,也会使电网系统中各点的电压▓产生波形畸变。

                  2.2 谐波危害

                  谐波是影响电能质量的重要因素之一,它通常是由电网中的非线性元件产生的。船舶电网中的谐波对船舶设备的运行会产生许多不□ 利的影响:
                  1) 使船舶发电机的效率降低;
                  2) 使电气设备出现过热,振动和噪音的现象,并产生绝缘老化、使用寿命缩短,甚至发生故障或烧毁的结果;3)谐波还会引起船舶继电保护和自动控制装置的可靠性降低,产生误动作;4)谐波对通信设备和电子设备也会产生严重干扰。因此,谐波对于船舶电网是一种电磁环境的污染。

                  微电子设备在船舶测量、控制、保护、操作等系统中应用广泛№,它对电流波形有较高的要求,易遭受谐波干扰。综合全电力推进系统◣产生的谐波通过船舶电网对船上包括测量、保护、控制、操作等系统中的仪表、仪器和设备造成影响。如谐波对计算机的干扰主要是影响磁性元件和数据处理系统的精度和性能,从而影响计算机处理数据的质量。谐波对船舶照明及生活用电等设备的影响主要表现在增加损耗、降低寿命和运行性能劣化。谐波问题日益突出和严重,国内外都∮发生过因谐波而引发的重大船舶事故。特别由于变频驱动的使用,使电动机绝缘物以及电缆绝缘层迅速老化、甚至烧毁;共模电压在电机转轴上感应出高的轴电压,并形成轴承放电电流从而电腐蚀轴承,使电机在短期内报废;高频传导性和辐射性 EMI 使变频驱动系统可靠性下降,故障率增加,并影响电网上的其他用电设备。因此,研究变频器所带来的负面效应及其解决方法在电力推进系统中具有重要的理论意义和实用价值。

                  3、综合电力推进系统谐波限制分析

                  为解决电力电子装置产生的谐波污染和低功率因数问题,传统的手段是设置无功补偿电容器和 LC 滤波器,这两种方法结构简单,既可以抑制谐波,又可以补偿无功功率,一直被广泛应用。但这种方法的主要缺点是补偿特性受电网阻抗和运行状态影响,易和系统发生并联谐振,此外,此种▆补偿方法损耗大,又只能补偿固定频率的谐波,难以对变化的无功功率和谐波进行有效的动态补偿。而随着电力系统的发展,对无功功率和谐波进行快速动态补偿的需求越来越大。目前的趋势是采用电力电子装置进行谐波补偿,即采用有源滤波器(ActivePower Filter,APF)。

                  3.1 有源滤波器的优势
                  有源滤波器的主要优点有;

                  1) 有源滤波装置是一个高阻抗电流源,它的接入对系统阻抗不会产生影响,因此此类装置适合系列化、规模化生产。
                  2) 当电网结构发生变化时装置受电网阻抗的影响不▓大,不存在与电网阻抗发生谐波的危险,同时还能抑制串并联谐振。
                  3) 原理上比 PPF 更为优越,用同一台装置可同时补偿多次谐波电流和非整流倍次的谐波电流,完成各次谐波的治理。
                  4) 实现动态补偿,可对频率和大小均变化的谐波及变化的无功功率进行补偿,对补偿对象的变化有极快的响应速度。
                  5) 由于装置本身能完成输出限制,当线路中的谐波电流突然增大时有源滤波器不会发生过载,并且能正常发挥作用,不需要与系统断开。
                  6) 具备多种补偿功能,可以对无功功率和负序进行补偿。
                  7) 谐波补偿特性不受电网频率变化的影响。
                  8) 可以对多个谐波源进行集中治理。

                  3.2 ANAPF 系列有源电力滤波装置

                  ANAPF 系列有源电力滤波装置作为一种用于动态抑制谐波、补偿无功的新型电力电子装置,它能够对大小和频率都变化的谐波以及变化的无功进行补偿,可克服 LC滤波器等传统的谐波抑制和无功补偿方法的缺点,实现了动态跟踪补偿,是谐波治理和无功补偿的最佳选择,是确保海上平台电力系统稳定运行的有力保障。

                  3.2.1 工作原理

                  ANAPF 系列有源电力滤波装置,以并联的方式接入电网,通过实时检测负载的谐波和无功分量,采用 PWM 变流技术,从变流器中产生一个和当前谐波分量和无功分量对应的反向分量并实时注入电力系「统,从而实现谐波治理和无功补偿。(见图 1)


                  图 1 ANAPF 有源电力滤波装置的工作原理图

                  3.2.2 技术参数




                  3.2.3 功能⌒ 模块介绍
                  控制器模块 APFMC-C100
                  主要由:DSP(数字信号处理器)、FPGA 逻辑器件、AD 信号采样电路、DI/DO 输入输出控制电路、PWM 波形控制电路、RS485 通讯电路等组成,主要用来完成电压、电流等信号的采集和处理、指令电流的计算、开关电路的生成、PWM 信号的输出、系统对外通讯与系统保护等功能。控制系统是有源滤波器的核心,它决定了有源电力滤波器系统的主要性能和指标。
                  变流器模块 APFCOV
                  其核心是储能电容和 IGBT 模块。变流★器的作用主要是将电网的电压经 IGBT 功率模块整流后为储能电容充电,使母线电压维持在某个稳定的值,在这个过程中变流器主要工作在整流状态,当主电路产生补偿电流时,变流器又工作在逆变状态。考虑到产品是在电网中长时间运行的,因此直流支撑电容采用薄膜电♂容,功率模块采用德国原装产品,以确保整机质量。变流器的选择根据补偿电流的大小而有♀所不同。
                  电抗器模块 APF-RE.DG、APF-RE.SDG
                  APF 电抗器起滤波作用,滤除 APF 发出的电网不需要的谐波。电抗器可分为单相和三相,电流从 15A 到 200A 等多种规格。
                  人机操作界面 APF-HMI
                  APF 柜在工作时,系统可以监测其网侧电流、APF 桥臂电流以及负载侧电流,用户可以通过 HMI 来对 APF 的运行模式进行『设置,对于运行中出现的问题,可以产生对应的事件记录。HMI 就是我司针对※电力系统,工矿企业,公用设施,智能大厦的电力监控需→求而设计的一种智能仪表,它采用高亮度 TFT-LCD 彩屏显示界面,通过面板按键来实现参数设置和控制,集成全部电力参数的测量、全面的电能计量和考核管理、多种电力质量参数的分析。
                  配套的电流采样互感器 AKH-0.66-K

                  3.2.4 技术优势

                  DSP+FPGA 全数字控制方式,具有极快的响▼应时间;先进的主电路拓扑和控制算法,精度更高、运行更稳定;一机多能,既可补谐波,又可兼补无功;模块化设计,便于生产调试;
                  便利的并联设计╲,方便扩容;
                  具有完善的桥臂过流、保护功能;
                  使用方便,易于操作和维护。

                  3.2.5 有源滤波器报价及元件清单



                  4、ANAPF 有源电力滤」波装置的应用实例
                  本文以某实际大型旅游客轮的综合电力推进系统为例,其基本参数如下↓


                  该船的电力系统主要分两大部分:6600V 中压电网和 440V 低压电网。4 台主发电机为6600V 主电网供电,主推进电机和侧推器为其主要负载;440 主电网通过变压器接在 6600V电网上,其负载包括主推进电▅机励磁系统、舵机、酒店电力服务系统以及其他辅助设备等。
                  当 ANAPF 未投入电网时,电网侧和负载侧的电压电流是完全相同的,所以下面仅列出了电网侧的相电压和相电流。
                  图 2 和图 3 表明,ANAPF 未投入时电网侧相电压几乎没有发生畸变,但相电流的波形畸变十分严重。下面是分别对电网侧 A 相相电压和相电流的傅里叶分析,对畸变程度进行量化(0.02s 后的 3 个周期作为傅里叶分析的对象)。


                  图 2 ANAPF 未投入时电网侧相电压波◤形

                  图 3 ANAPF 未投入时电网侧相电流波形



                  图 4 ANAPF 未投入时电网侧 A 相电压(左)和相电流波形及傅里叶分析


                  图 4 的傅里叶分析表明,相电压的畸变非常小,THD 值约有 2.68%,而电流的 THD 值已高达 50.56%,谐波含量已经很高,可以看到其☆中 5 次、7 次谐波幅值较大,已分别高达基波幅值的 46%和 23%。亟需采取谐波治理措施,以免△对其他较敏感负载造成影响甚至损毁。
                  由 ANAPF 计算出的补偿电流指令信号,因补偿电流和谐波电流(以及无功电流)幅值相等相位相反,所以会相互抵消,从而使得电网电流变成只含基波的正弦形状。图 5 和图 6为 ANAPF 投入电网后电网侧的电压电流波形,与未投入时的波形图(图 2 和图 3)对比可以发现滤波效果显著,ANAPF 投入后的电压电流波形都十分接近正弦波。



                  图 5 ANAPF 投入后电网侧相电压波形



                  图 6 ANAPF 投入后电网侧相电流波形 


                  图 7 ANAPF 投入后电网 A 相电压(左)和相电流波形及其傅里叶分析 


                  图 7 的傅里叶分析表明,电网侧的电压和电流的畸变程度都减小了,尤其是电〓流的 THD值由先前的 50.56%下降至现在的 0.79%;电压的 THD 值现在约为 0.00%。谐波幅值占基波︽幅值的百分比均小于 1.1%,显然电网侧的谐波电压和谐波电流含量都能满足相关限制值的要求。以上结论表明,安科瑞 ANAPF 系列并联型有源电力滤波装置对改善电网侧的电压和电流有着显著的效果。

                  5、结语
                  目前,有源滤波器已成为电力系统治理谐波污染的主要发展▂方向。ANAPF 有源电力滤波器作为一种特别适合舰船电网谐波治理的优秀方案,正受到广泛关注。它的使用,较好地抑制了◆舰船电网中的谐波污染,极大地改善了电网的电能质量,完全满足船级社的有关规定,在船舶制造业应用方面将〗有着广阔的前景。

                  参考文献: 

                  [1] 冯英华,吴旖,杨平西. 综合全电力系统主发电机谐波损耗分析与算法[ J ]. 船舶工程, 2008, 30 (5) : 12215.
                  [2] 姜齐荣,赵东元,陈建业 .有源电力滤波器 ——结构原理控制[M].北京 : 科学出版社,2005.1-2,20-25.
                  [3] 宋艳琼 .电力推进船舶电网谐波抑制方案的探讨 [J].广州航海高等专科学校学报,2009,2(17): 11-14.
                  [4] 马晓军,陈建业,韩英铎,等.单相并联型有源滤波器的研究[J]. 清华大学学报: 自然科学版,1997, 37(7): 39-43.
                  [5] 胡铭,陈珩.有源滤波技术及其♀应用◥[J]. 电力系统自动化,2000,24(3),66-70.



                船舶应用
                船舶应用

                • 1、引言

                  船舶综合全电力推进系统是现行船舶平台的电力和动力两大系统发展的综合,它适合于不同种类的船舶。世界各国都在针对船舶综合全电力推进系统进行深入的研究,国外已经开发了多种类型的综合↑全电力推进系统并在多型船舶上应用。据统计,在 80 年代后期以来,发达国家新建的客轮、破冰船、渡轮约有 30%已采用综合全电力推进系统,且成流行趋势;国内民用船舶中全电力推进的应用已有多种形式:如江南船厂为国外设计建造的 3200 吨全电力推进化学品运输船、胜利油田的“胜利 232”号工程船、我国 2006 年交工的首艘采用综合全电力推进系统的火车滚装渡船“中铁渤海一号”。作为船舶主动力系统的综合全电力推进系统由于其高效率、高可靠性、高自动化以及低维护也成为新世纪大型水面船舶青睐的主推进系统。
                  船舶♀综合全电力推进系统包括:发电、输电、配电、变电、拖动、推进、储能、监控和电力管理等诸,多功能多系统的复杂性也带来了严重的谐波污染问题。综合全电力推进系统各个功能模块是否运行良好,是否相互协调好,关系着整个综合全电力推进系统是否能具有良好的运行状态和优异的工作性能。

                  2、谐波及波形畸变的产生和危害
                  2.1 谐波来源

                  综合全电力推进系统中产生的谐波来源主要有:
                  1) 推进同步发电机。推进同步发电机产生的谐波电动势是因转子和定子之间空气隙中的磁场非正弦分布所引起的。推进同步发电机每对磁极下气隙中的磁场不可能完全按正弦分布,这是由磁极结构所决定的。因此,电动势中必然含有谐波分量。
                  2) 变压器。变压器的励磁回路具有非线性电感,因此,励磁电流是非正弦波形,使得电流波形发生波形畸变。在空载时,非正弦的励磁电流在变压器原绕组的漏抗上产生压降,使变压器感应电势中包含谐波分量。变压器空载合闸时,常常会出现很大的励磁涌流。在严重的情况下,涌流波形强烈畸变,不但幅值可高达数十倍于额定空载电流,而且正负半波的波形极不对称。这种涌流持续时间比较长,属于准稳定的非正弦波。特征谐波是整流设备产生波形畸变的主要成分。由于输电系统的电压等级高、输送功率大,即使百分数很小的谐波分量也会对低压设备及弱电设备产生不可忽视的骚扰。
                  3) 变频器。船舶综合全电力推进系统采用变频进行调速,而谐波频率又随频率变化,这样对船舶电网的电源质量影响较大。变频电路输入电流的谐波分量十分复杂,其频率不仅和输入电源频率、变频电路的结构有关,而且和变频电路的输出频率有关。
                  在上述三个谐波源中推进同步发电机为谐波电压源,变压器为谐波电流源。对于谐波电流源的设备来说,即使供给它们的电压是理想的正弦波,它们所取用的电流中也会含有谐波成分。谐波的含量取决于它们本身的特性和工作状况。谐波电流注入船舶电网后,在船舶电网系统的阻抗上引起谐波压降,也会使电网系统中各点的电压产生◥波形畸变。

                  2.2 谐波危害

                  谐波是影响电能质量的重要因素之一,它通常是由电网中的非线性元件产生的。船舶电网中的谐波对船舶设备的运行会产生许多不利的影响:
                  1) 使船舶发电机的效率降低;
                  2) 使电气设备出现过热,振动和噪音的现象,并产生绝缘老化、使用寿命缩短,甚至发生故障或烧毁的结果;3)谐波还会引起船舶继电保护和自动控制装置的可靠性降低,产生误动作;4)谐波对通信设备和电子设备也会产生严重干扰。因此,谐波对于船舶电网是一种电磁环境的污染。

                  微电子设备在船舶测量、控制、保护、操作等系统中应用广泛,它对电流波形有较高的要求,易遭受谐波干扰。综合全电力推进系统产生的谐波通过船舶电网对船上包括测量、保护、控制、操作等系统中的仪表、仪器和设备造成影响。如谐波对计算机的干扰主要是影响磁性元件和数据处理系统的精度和性能,从而影响计算机处理数据的质量。谐波对船舶照明及生活用电等设备的影响主要表现在增加损耗、降低寿命和运行性能劣化。谐波问题日益突出和严重,国内外都发生过因谐波而引发的重大船舶事故。特别由于变频驱动的使用,使电动机绝缘物以及电缆绝缘层迅速老化、甚至烧毁;共模电压在电机转轴上感应出高的轴电压,并形成轴承放电电流从而电腐蚀轴承,使电机在短期内报废;高频传导性和辐射性 EMI 使变频驱动系统可靠性下降,故障率增加,并影响电网上的其他用电设备。因此,研究变频器所带来的负面效应及其解决方法在电力推进系统中具有重要的理论意义和实用价值。

                  3、综合电力推进系统谐波限制分析

                  为解决电力电子装置产生的谐波污染和低功率因数问题,传统的手段是设置无功补偿电容器和 LC 滤波器,这两种方法结构简单,既可以抑制谐波,又可以补偿无功功率,一直被广泛应用。但这种方法的主要缺点是补偿特性受电网阻抗和运行状态影响,易和系统发生并联谐振,此外,此种补偿方法损耗大,又只能补偿固定频率的谐波,难以对变化的无功功率和谐波进行有效的动态补偿。而随着电力系统的发展,对无功功率和谐波进行快速动态补偿的需求越来越大。目前的趋势是采用电力电子装置进行谐波补偿,即采用有源滤波器(ActivePower Filter,APF)。

                  3.1 有源滤波器的优势
                  有源滤波器的主要优点有;

                  1) 有源滤波装置是一个高阻抗电流源,它的接入对系统阻抗不会产生影响,因此此类装置适合系列化、规模化生产。
                  2) 当电网结构发生变化时装置受电网阻抗的影响不大,不存在与电网阻抗发生谐波的危险,同时还能抑制串并联谐振。
                  3) 原理上比 PPF 更为优越,用同一台装置可同时补偿多次谐波电流和非整流倍次的谐波电流,完成各次谐波的治理。
                  4) 实现动态补偿,可对频率和大小均变化的谐波及变化的无功功率进行补偿,对补偿对象的变化有极快的响应速度。
                  5) 由于装置本身能完成输出限制,当线路中的谐波电流突然增大时有源滤波器不会发生过载,并且能正常发挥作用,不需要与系统断开。
                  6) 具备多种补偿功能,可以对无功功率和负序进行补偿。
                  7) 谐波补偿特性不受电网频率变化的影响。
                  8) 可以对多个谐波源进行集中治理。

                  3.2 ANAPF 系列有源电力滤波装置

                  ANAPF 系列有源电力滤波装置作为一种用于动态抑制谐波、补偿无功的新型电力电子装置,它能够对大小和频率都变化的谐波以及变化的无功进行补偿,可克服 LC滤波器等传统的谐波抑制和无功补偿方法的缺点,实现了动态跟踪补偿,是谐波治理和无功补偿的最佳选择,是确保海上平台电力系统稳定运行的有力保障。

                  3.2.1 工作原理

                  ANAPF 系列有源电力滤波装置,以并联的方式接入电网,通过实时检测负载的谐波和无功分量,采用 PWM 变流技术,从变流器中产生一个和当前谐波分量和无功分量对应的反向分量并实时注◢入电力系统,从而实现谐波治理和无功补偿。(见图 1)


                  图 1 ANAPF 有源电力滤波装置的工作原理图

                  3.2.2 技术参数




                  3.2.3 功能模块介︾绍
                  控制器模块 APFMC-C100
                  主要由:DSP(数字信号处理器)、FPGA 逻辑器件、AD 信号采样电路、DI/DO 输入输出控制电路、PWM 波形控制电路、RS485 通讯电路等组成,主要用来完成电压、电流等信号的采集和处理、指令电流的计算、开关电路的生成、PWM 信号的输出、系统对外通讯与系统保护等功能。控制系统是有源滤波器的核心,它决定了有源电力滤波器系统的主要性能和指标。
                  变流器模块 APFCOV
                  其核心是储能电容和 IGBT 模块。变流器的〓作用主要是将电网的电压经 IGBT 功率模块整流后为储能电容充电,使母线电压维持在某个稳定的值,在这个过程中变流器主要工作在整流状态,当主电路产生补偿电流时,变流器又工作在逆变状态。考虑到产品是在电网中长时间运行的,因此直流支撑电容采用薄膜电容,功率模块采用德国原装产品,以确保整机质量。变流器的选择根据补偿电流的大小而有所不同。
                  电抗器模块 APF-RE.DG、APF-RE.SDG
                  APF 电抗器起滤波作用,滤除 APF 发出的电网不需要的谐波。电抗器可分为单相和三相,电流从 15A 到 200A 等多种规格。
                  人机操作界面 APF-HMI
                  APF 柜在工作时,系统可以监测其网侧电流、APF 桥臂电流以及负载侧电流,用户可以通过 HMI 来对 APF 的运行模式进行设置,对于运行中出现的问题,可以产生对应的事件记录。HMI 就是我司针对电力系统,工矿企业,公用设施,智能大厦的电力监控需求而设计的一种智能仪表,它采用高亮度 TFT-LCD 彩屏显示界面,通过面板按键来实现参数设置和控制,集成全部电力参数的测量、全面的电能计量和考核管理、多种电力质量参数的分析。
                  配套的电流采样互感器 AKH-0.66-K

                  3.2.4 技术优势

                  DSP+FPGA 全数字控制方式,具有极快的响应时间;先进的主电路拓扑和控制算法,精度更高、运行更稳定;一机多能,既可补谐波,又可兼补无功;模块化设计,便于生产调试;
                  便利的并联设计,方便扩容;
                  具有完善的桥臂过流、保护功能;
                  使用方便,易于操作和维护。

                  3.2.5 有源滤波器报价及元件清单



                  4、ANAPF 有源电力滤波装置的应用实例
                  本文以某实际大型旅游客轮的综合电力推进系统为例,其基本参数如下


                  该船的电力系统主要分两大部分:6600V 中压电网和 440V 低压电网。4 台主发电机为6600V 主电网供电,主推进电机和侧推器为其主要负载;440 主电网通过变压器接在 6600V电网上,其负载包括主推进电机励磁系统、舵机、酒店电力服务系统以及其他辅助设备等。
                  当 ANAPF 未投入电网时,电网侧和负载侧的电压电流是完全相同的,所以下面仅列出了电网侧的相电压和相电流。
                  图 2 和图 3 表明,ANAPF 未投入时电网侧相电压几乎没有发生畸变,但相电流的波形畸变十分严重。下面是分别对电网侧 A 相相电压和相电流的傅里叶分析,对畸变程度进行量化(0.02s 后的 3 个周期作为傅里叶分析的对象)。


                  图 2 ANAPF 未投入时电网侧相电压波形

                  图 3 ANAPF 未投入时电网侧相电流波形



                  图 4 ANAPF 未投入时电网侧 A 相电压(左)和相电流波形及傅里叶分析


                  图 4 的傅里叶分析表明,相电压的畸变非常小,THD 值约有 2.68%,而电流的 THD 值已高达 50.56%,谐波含量已经很高,可以▲看到其中 5 次、7 次谐波幅值较大,已分别高达基波幅值的 46%和 23%。亟需采取谐波治理措施,以免对其他较敏感负载造成影响甚至损毁。
                  由 ANAPF 计算出的补偿电流指令信号,因补偿电流和谐波电流(以及无功电流)幅值相等相位相反,所以会相互抵消,从而使得电网电流变成只含基波的正弦形状。图 5 和图 6为 ANAPF 投入电网后电网侧的电压电流波形,与未投入时的波形图(图 2 和图 3)对比可以发现滤波效果显著,ANAPF 投入后的电压电流波形都十分接近正弦波。



                  图 5 ANAPF 投入后电网侧相电压波形



                  图 6 ANAPF 投入后电网侧相电流波形 


                  图 7 ANAPF 投入后电网 A 相电压(左)和相电流波形及其傅里叶分析 


                  图 7 的傅里叶分析表明,电网侧的电压和电流的畸变程度都减小了,尤其是电流的 THD值由先前的 50.56%下降至现在的 0.79%;电压的 THD 值现在约为 0.00%。谐波幅值占基波幅值的百分比均小于 1.1%,显然电网侧的谐波电压和谐波电流含量都能满足相关限制值的要求。以上结论表明,安科瑞 ANAPF 系列并联型有源电力滤波装置对改善电网侧的电压和电流有着显著的效果。

                  5、结语
                  目前,有源滤波器已成为电力系统治理谐波污染的主要发展方向。ANAPF 有源电力滤波器作为一种特别适合舰船电网谐波治理的优秀方案,正受到广泛关注。它的使用,较好地抑制了舰船电网中的♂谐波污染,极大地改善了电网的电能质量,完全满足船级社的有关规定,在船舶制造业应用▆方面将有着广阔的前景。

                  参考文献: 

                  [1] 冯英华,吴旖,杨平西. 综合全电力系统主发电机谐波损耗分析与算法[ J ]. 船舶工程, 2008, 30 (5) : 12215.
                  [2] 姜齐荣,赵东元,陈建业 .有源电力滤波器 ——结构原理控制[M].北京 : 科学出版社,2005.1-2,20-25.
                  [3] 宋艳琼 .电力推进船舶电网谐波抑制方案的探讨 [J].广州航海高等专科学校学报,2009,2(17): 11-14.
                  [4] 马晓军,陈建业,韩英铎,等.单相并联型有源滤波器的研究[J]. 清华大学学报: 自然科学版,1997, 37(7): 39-43.
                  [5] 胡铭,陈珩.有源滤波技术及其应用[J]. 电力系统自动化,2000,24(3),66-70.



                船舶应用
                船舶应用

                • 1、引言

                  船舶综合全电力推进系统是现行船舶平台的电力和动力两大系统发展的综合,它适合于不同种类的船舶。世界各国都在针对船舶综合全电力推进系统进行深入的研究,国外已经开发了多种类☉型的综合全电力推进系统并在多型船舶上应用。据统计,在 80 年代后期以来,发达国家新建的客轮、破冰船、渡轮约有 30%已采用综合全电力推进系统,且成流行趋势;国内民用船舶中全电力推进的应用已有多种形式:如江南船厂为国外设计建造的 3200 吨全电力推进化学品运输船、胜利油田的“胜利 232”号工程船、我国 2006 年交工的首艘采用综合全电力推进系统的火车滚装渡船“中铁渤海一号”。作为船舶主动力系统的综合全电力推进系统由于其高效率、高可靠性、高自动化以及低维护也成为新世纪大型水面船舶青睐的主推进系统。
                  船舶综№合全电力推进系统包括:发电、输电、配电、变电、拖动、推进、储能、监控和电力管理等诸,多功能多系统的复杂性也带来了严重的谐波污染问题。综合全电力推进系统各个功能模块是否运行良好,是否相互协调好,关系着整个综合全电力推进系统是否能具有良好的运行状态和优异的工作性能。

                  2、谐波及波形畸变的产生和危害
                  2.1 谐波来源

                  综合全电力推进系统中产生的谐波来源主要有:
                  1) 推进同步发电机。推进同步发电机产生的谐波电动势是因转子和定子之间空气隙中的磁场非正弦分布所引起的。推进同步发电机每对磁极下气隙中的磁场不可能完全按正弦分布,这是由磁极结构所决定的。因此,电动势中必然含有谐波分量。
                  2) 变压器。变压器的励磁回路具有非线性电感,因此,励磁电流是非正弦波形,使得电流波形发生波形畸变。在空载时,非正弦的励磁电流在变压器原绕组的漏抗上产生压降,使变压器感应电势中包含谐波分量。变压器空载合闸时,常常会出现很大的励磁涌流。在严重的情况下,涌流波形强烈畸变,不但幅值可高达数十倍于额定空载电流,而且正负半波的波形极不对称。这种涌流持续时间比较长,属于准稳定的非正弦波。特征谐波是整流设备产生波形畸变的主要成分。由于输电系统的电压等级高、输送功率大,即使百分数很小的谐波分量也会对低压设备及弱电设备产生不可忽视的骚扰。
                  3) 变频器。船舶综合全电力推进系统采用变频进行调速,而谐波频率又随频率变化,这样对船舶电网的电源质量影响较大。变频电路输入电流的谐波分量十分复杂,其频率不仅和输入电源频率、变频电路的结构有关,而且和变频电路的输出频率有关。
                  在上述三个谐波源中推进同步发电机为谐波电压源,变压器为谐波电流源。对于谐波电流源的设备来说,即使供给它们的电压是理想的正弦波,它们所取用的电流中也会含有谐波成分。谐波的含量取决于它们本身的特性和工作状况。谐波电流注入船舶电网后,在船舶电网系统的阻抗上引起谐波压降,也会使电网系统中各点的电压产生波形畸变。

                  2.2 谐波危害

                  谐波是影响电能质量的重要因素之一,它通常是由电网中的非线性元件产生的。船舶电网中的谐波对船舶设备的运行会产生许多不利的影响:
                  1) 使船舶发电机的效率降低;
                  2) 使电气设备出现过热,振动和噪音的现象,并产生绝缘老化、使用寿命缩短,甚至发生故障或烧毁的结果;3)谐波还会引起船舶继电保护和自动控制装置的可靠性降低,产生误动作;4)谐波对通信设备和电子设备也会产生严重干扰。因此,谐波对于船舶电网是一种电磁环境的污染。

                  微电子设备在船舶测量、控制、保护、操作等系统中应用广泛,它对电流波形有较高的要求,易遭受谐波干扰。综合全电力推进系统产生的谐波通过船舶电网对船上包括测量、保护、控制、操作等系统中的仪表、仪器和设备造成影响。如谐波对计算机的干扰主要是影响磁性元件和数据处理系统的精度和性能,从而影响计算机处理数据的质量。谐波对船舶照明及生活用电等设备的影响主要表现在增加损耗、降低寿命和运行性能劣化。谐波问题日益突出和严重,国内外都发生过因谐波而引发的重大船舶事故。特别由于变频驱动的使用,使电动机绝缘物以及电缆绝缘层迅速老化、甚至烧毁;共模电压在电机转轴上感应出高的轴电压,并形成轴承放电电流从而电腐蚀轴承,使电机在短期内报废;高频传导性和辐射性 EMI 使变频驱动系统可靠性下降,故障率增加,并影响电网上的其他用电设备。因此,研究变频器所带来的负面效应及其解决方法在电力推进系统中具有重要的理论意义和实用价值。

                  3、综合电力推进系统谐波限制分析

                  为解决电力电子装置产生的谐波污染和低功率因数问题,传统的手段是设置无功补偿电容器和 LC 滤波器,这两种方法结构简单,既可以抑制谐波,又可以补偿无功功率,一直被广泛应用。但这种方法的主要缺点是补偿特性受电网阻抗和运行状态影响,易和系统发生并联谐振,此外,此种补偿方法损耗大,又只能补偿固定频率的谐波,难以对变化的无功功率和谐波进行有效的动态补偿。而随着电力系统的发展,对无功功率和谐波进行快速动态补偿的需求越来越大。目前的趋势是采用电力电子装置进行谐波补偿,即采用有源滤波器(ActivePower Filter,APF)。

                  3.1 有源滤波器的优势
                  有源滤波器的主要优点有;

                  1) 有源滤波装置是一个高阻抗电流源,它的接入对系统阻抗不会产生影响,因此此类装置适合系列化、规模化生产。
                  2) 当电网结构发生变化时装置受电网阻抗的影响不大,不存在与电网阻抗发生谐波的危险,同时还能抑制串并联谐振。
                  3) 原理上比 PPF 更为优越,用同一台装置可同时补偿多次谐波电流和非整流倍次的谐波电流,完成各次谐波的治理。
                  4) 实现动态补偿,可对频率和大小均变化的谐波及变化的无功功率进行补偿,对补偿对象的变化有极快的响应速度。
                  5) 由于装置本身能完成输出限制,当线路中的谐波电流突然增大时有源滤波器不会发生过载,并且能正常发挥作用,不需要与系统断开。
                  6) 具备多种补偿功能,可以对无功功率和负序进行补偿。
                  7) 谐波补偿特性不受电网频率变化的影响。
                  8) 可以对多个谐波源进行集中治理。

                  3.2 ANAPF 系列有源电力滤波装置

                  ANAPF 系列有源电力滤波装置作为一种用于动态抑制谐波、补偿无功的新型电力电子装置,它能够对大小和频率都变化的谐波以及变化的无功进行补偿,可克服 LC滤波器等传统的谐波抑制和无功补偿方法的缺点,实现了动态跟踪补偿,是谐波治理和无功补偿的最佳选择,是确保海上平台电力系统稳定运行的有力保障。

                  3.2.1 工作原理

                  ANAPF 系列有源电力滤波装置,以并联的方式接入电网,通过实时检测负载的谐波和无功分量,采用 PWM 变流技术,从变流器中产生一个和当前谐波分量和无功分量对应的反向分量并实时注入电力系统,从而实现谐波治理和无功补偿。(见图 1)


                  图 1 ANAPF 有源电力滤波装置的工作原理图

                  3.2.2 技术参数




                  3.2.3 功能模块介绍
                  控制器模块 APFMC-C100
                  主要由:DSP(数字信号处理器)、FPGA 逻辑器件、AD 信号采样电路、DI/DO 输入输出控制电路、PWM 波形控制电路、RS485 通讯电路等组成,主要用来完成电压、电流等信号的采集和处理、指令电流的计算、开关电路的生成、PWM 信号的输出、系统对外通讯与系统保护等功能。控制系统是有源滤波器的核心,它决定了有源电力滤波器系统的主要性能和指标。
                  变流器模块 APFCOV
                  其核心是储能电容和 IGBT 模块。变流器的作用主要是将电网的电压经 IGBT 功率模块整流后为储能电容充电,使母线电压维持在某个稳定的值,在这个过程中变流器主要工作在整流状态,当主电路产生补偿电流时,变流器又工作在逆变状态。考虑到产品是在电网中长时间运行的,因此直流支撑电容采用薄膜电容,功率模块采用德国原装产品,以确保整机质量。变流器的选择根据补偿电流的大小而有所不同。
                  电抗器模块 APF-RE.DG、APF-RE.SDG
                  APF 电抗器起滤波作用,滤除 APF 发出的电网不需要的谐波。电抗器可分为单相和三相,电流从 15A 到 200A 等多种规格。
                  人机操作界面 APF-HMI
                  APF 柜在工作时,系统可以监测其网侧电流、APF 桥臂电流以及负载侧电流,用户可以通过 HMI 来对 APF 的运行模式进行设置,对于运行中出现的问题,可以产生对应的事件记录。HMI 就是我司针对电力系统,工矿企业,公用设施,智能大厦的电力监控需求而设计的一种智能仪表,它采用高亮度 TFT-LCD 彩屏显示界面,通过面板按键来实现参数设置和控制,集成全部电力参数的测量、全面的电能计量和考核管理、多种电力质量参数的分析。
                  配套的电流采样互感器 AKH-0.66-K

                  3.2.4 技术优势

                  DSP+FPGA 全数字控制方式,具有极快的响应时间;先进的主电路拓扑和控制算法,精度更高、运行更稳定;一机多能,既可补谐波,又可兼补无功;模块化设计,便于生产调试;
                  便利的并联设计,方便扩容;
                  具有完善的桥臂过流、保护功能;
                  使用方便,易于操作和维护。

                  3.2.5 有源滤波器报价及元件清单



                  4、ANAPF 有源电力滤波装置的应用实例
                  本文以某实际大型旅游客轮的综合电力推进系统为例,其基本参数如下


                  该船的电力系统主要分两大部分:6600V 中压电网和 440V 低压电网。4 台主发电机为6600V 主电网供电,主推进电机和侧推器为其主要负载;440 主电网通过变压器接在 6600V电网上,其负载包括主推进电机励磁系统、舵机、酒店电力服务系统以及其他辅助设备等。
                  当 ANAPF 未投入电网时,电网侧和负载侧的电压电流是完全相同的,所以下面仅列出了电网侧的相电压和相电流。
                  图 2 和图 3 表明,ANAPF 未投入时电网侧相电压几乎没有发生畸变,但相电流的波形畸变十分严重。下面是分别对电网侧 A 相相电压和相电流的傅里叶分析,对畸变程度进行量化(0.02s 后的 3 个周期作为傅里叶分析的对象)。


                  图 2 ANAPF 未投入时电网侧相电压波形

                  图 3 ANAPF 未投入时电网侧相电流波形



                  图 4 ANAPF 未投入时电网侧 A 相电压(左)和相电流波形及傅里叶分析


                  图 4 的傅里叶分析表明,相电压的畸变非常小,THD 值约有 2.68%,而电流的 THD 值已高达 50.56%,谐波含量已经很高,可以看到其中 5 次、7 次谐波幅值较大,已分别高达基波幅值的 46%和 23%。亟需采取谐波治理措施,以免对其他较敏感负载造成影响甚至损毁。
                  由 ANAPF 计算出的补偿电流指令信号,因补偿电流和谐波电流(以及无功电流)幅值相等相位相反,所以会相互抵消,从而使得电网电流变成只含基波的正弦形状。图 5 和图 6为 ANAPF 投入电网后电网侧的电压电流波形,与未投入时的波形图(图 2 和图 3)对比可以发现滤波效果显著,ANAPF 投入后的电压电流波形都十分接近正弦波。



                  图 5 ANAPF 投入后电网侧相电压波形



                  图 6 ANAPF 投入后电网侧相电流波形 


                  图 7 ANAPF 投入后电网 A 相电压(左)和相电流波形及其傅里叶分析 


                  图 7 的傅里叶分析表明,电网侧的电压和电流的畸变程度都减小了,尤其是电流的 THD值由先前的 50.56%下降至现在的 0.79%;电压的 THD 值现在约为 0.00%。谐波幅值占基波幅值的百分比均小于 1.1%,显然电网侧的谐波电压和谐波电流含量都能满足相关限制值的要求。以上结论表明,安科瑞 ANAPF 系列并联型有源电力滤波装置对改善电网侧的电压和电流有着显著的效果。

                  5、结语
                  目前,有源滤波器已成为电力系统治理谐波污染的主要发展方向。ANAPF 有源电力滤波器作为一种特别适合舰船电网谐波治理的优秀方案,正受到广泛关注。它的使用,较好地抑制了舰船电□ 网中的谐波污染,极大地改善了电网的电能质量,完全满足船级社的有关规定,在船舶制造业应用方面将有着广阔的前景。

                  参考文献: 

                  [1] 冯英华,吴旖,杨平西. 综合全电力系统主发电机谐波损耗分析与算法[ J ]. 船舶工程, 2008, 30 (5) : 12215.
                  [2] 姜齐荣,赵东元,陈建业 .有源电力滤波器 ——结构原理控制[M].北京 : 科学出版社,2005.1-2,20-25.
                  [3] 宋艳琼 .电力推进船舶电网谐波抑制方案的探讨 [J].广州航海高等专科学校学报,2009,2(17): 11-14.
                  [4] 马晓军,陈建业,韩英铎,等.单相并联型有源滤波器的研究[J]. 清华大学学报: 自然科学版,1997, 37(7): 39-43.
                  [5] 胡铭,陈珩.有源滤波技术及其应用[J]. 电力系统自动化,2000,24(3),66-70.



                船舶应用
                船舶应用

                • 1、引言

                  船舶综合全电力推进系统是现行船舶平台的电力和动力两大系统发展的综合,它适合于不同种类的船舶。世界各国都在针对船舶综合全电力推进系统进行深入的研究,国外已经◆开发了多种类型的综合全电力推进系统并在多型船舶上应用。据统计,在 80 年代后期以来,发达国家新建的客轮、破冰船、渡轮约有 30%已采用综合全电力推进系统,且成流行趋势;国内民用船舶中全电力推进的应用已有多种形式:如江南船厂为国外设计建造的 3200 吨全电力推进化学品运输船、胜利油田的“胜利 232”号工程船、我国 2006 年交工的首艘采用综合全电力推进系统的火车滚装渡船“中铁渤海一号”。作为船舶主动力系统的综合全电力推进系统由于其高效率、高可靠性、高自动化以及低维护也成为新世纪大型水面船舶青睐的主推进系统。
                  船舶综合全电力推进系统包括:发电、输电、配电、变电、拖动、推进、储能、监控和电力管理等诸,多功能多系统的复杂性也带来了严重的谐波污染问题。综合全电力推进系统各个功能模块是否运行良好,是否相互协调好,关系着整个综合全电力推进系统是否能具有良好的运行状态和优异的工作性能。

                  2、谐波及波形畸变的产生和危害
                  2.1 谐波来源

                  综合全电力推进系统中产生的谐波来源主要有:
                  1) 推进同步发电机。推进同步发电机产生的谐波电动势是因转子和定子之间空气隙中的磁场非正弦分布所引起的。推进同步发电机每对磁极下气隙中的磁场不可能完全按正弦分布,这是由磁极结构所决定的。因此,电动势中必然含有谐波分量。
                  2) 变压器。变压器的励磁回路具有非线性电感,因此,励磁电流是非正弦波形,使得电流波形发生波形畸变。在空载时,非正弦的励磁电流在变压器原绕组的漏抗上产生压降,使变压器感应电势中包含谐波分量。变压器空载合闸时,常常会出现很大的励磁涌流。在严重的情况下,涌流波形强烈畸变,不但幅值可高达数十倍于额定空载电流,而且正负半波的波形极不对称。这种涌流持续时间比较长,属于准稳定的非正弦波。特征谐波是整流设备产生波形畸变的主要成分。由于输电系统的电压等级高、输送功率大,即使百分数很小的谐波分量也会对低压设备及弱电设备产生不可忽视的骚扰。
                  3) 变频器。船舶综合全电力推进系统采用变频进行调速,而谐波频率又随频率变化,这样对船舶电网的电源质量影响较大。变频电路输入电流的谐波分量十分复杂,其频率不仅和输入电源频率、变频电路的结构有关,而且和变频电路的输出频率有关。
                  在上述三个谐波源中推进同步发电机为谐波电压源,变压器为谐波电流源。对于谐波电流源的设备来说,即使供给它们的电压是理想的正弦波,它们所取用的电流中也会含有谐波成分。谐波的含量取决于它们本身的特性和工作状况。谐波电流注入船舶电网后,在船舶电网系统的阻抗上引起谐波压降,也会使电网系统中各点的电压产生波形畸变。

                  2.2 谐波危害

                  谐波是影响电能质量的重要因素之一,它通常是由电网中的非线性元件产生的。船舶电网中的谐波对船舶设备的运行会产生许多不利的影响:
                  1) 使船舶发电机的效率降低;
                  2) 使电气设备出现过热,振动和噪音的现象,并产生绝缘老化、使用寿命缩短,甚至发生故障或烧毁的结果;3)谐波还会引起船舶继电保护和自动控制装置的可靠性降低,产生误动作;4)谐波对通信设备和电子设备也会产生严重干扰。因此,谐波对于船舶电网是一种电磁环境的污染。

                  微电子设备在船舶测量、控制、保护、操作等系统中应用广泛,它对电流波形有较高的要求,易遭受谐波干扰。综合全电力推进系统产生的谐波通过船舶电网对船上包括测量、保护、控制、操作等系统中的仪表、仪器和设备造成影响。如谐波对计算机的干扰主要是影响磁性元件和数据处理系统的精度和性能,从而影响计算机处理数据的质量。谐波对船舶照明及生活用电等设备的影响主要表现在增加损耗、降低寿命和运行性能劣化。谐波问题日益突出和严重,国内外都发生过因谐波而引发的重大船舶事故。特别由于变频驱动的使用,使电动机绝缘物以及电缆绝缘层迅速老化、甚至烧毁;共模电压在电机转轴上感应出高的轴电压,并形成轴承放电电流从而电腐蚀轴承,使电机在短期内报废;高频传导性和辐射性 EMI 使变频驱动系统可靠性下降,故障率增加,并影响电网上的其他用电设备。因此,研究变频器所带来的负面效应及其解决方法在电力推进系统中具有重要的理论意义和实用价值。

                  3、综合电力推进系统谐波限制分析

                  为解决电力电子装置产生的谐波污染和低功率因数问题,传统的手段是设置无功补偿电容器和 LC 滤波器,这两种方法结构简单,既可以抑制谐波,又可以补偿无功功率,一直被广泛应用。但这种方法的主要缺点是补偿特性受电网阻抗和运行状态影响,易和系统发生并联谐振,此外,此种补偿方法损耗大,又只能补偿固定频率的谐波,难以对变化的无功功率和谐波进行有效的动态补偿。而随着电力系统的发展,对无功功率和谐波进行快速动态补偿的需求越来越大。目前的趋势是采用电力电子装置进行谐波补偿,即采用有源滤波器(ActivePower Filter,APF)。

                  3.1 有源滤波器的优势
                  有源滤波器的主要优点有;

                  1) 有源滤波装置是一个高阻抗电流源,它的接入对系统阻抗不会产生影响,因此此类装置适合系列化、规模化生产。
                  2) 当电网结构发生变化时装置受电网阻抗的影响不大,不存在与电网阻抗发生谐波的危险,同时还能抑制串并联谐振。
                  3) 原理上比 PPF 更为优越,用同一台装置可同时补偿多次谐波电流和非整流倍次的谐波电流,完成各次谐波的治理。
                  4) 实现动态补偿,可对频率和大小均变化的谐波及变化的无功功率进行补偿,对补偿对象的变化有极快的响应速度。
                  5) 由于装置本身能完成输出限制,当线路中的谐波电流突然增大时有源滤波器不会发生过载,并且能正常发挥作用,不需要与系统断开。
                  6) 具备多种补偿功能,可以对无功功率和负序进行补偿。
                  7) 谐波补偿特性不受电网频率变化的影响。
                  8) 可以对多个谐波源进行集中治理。

                  3.2 ANAPF 系列有源电力滤波装置

                  ANAPF 系列有源电力滤波装置作为一种用于动态抑制谐波、补偿无功的新型电力电子装置,它能够对大小和频率都变化的谐波以及变化的无功进行补偿,可克服 LC滤波器等传统的谐波抑制和无功补偿方法的缺点,实现了动态跟踪补偿,是谐波治理和无功补偿的最佳选择,是确保海上平台电力系统稳定运行的有力保障。

                  3.2.1 工作原理

                  ANAPF 系列有源电力滤波装置,以并联的方式接入电网,通过实时检测负载的谐波和无功分量,采用 PWM 变流技术,从变流器中产生一个和当前谐波分量和无功分量对应的反向分量并实时注入电力系统,从而实现谐波治理和无功补偿。(见图 1)


                  图 1 ANAPF 有源电力滤波装置的工作原理图

                  3.2.2 技术参数




                  3.2.3 功能模块介绍
                  控制器模块 APFMC-C100
                  主要由:DSP(数字信号处理器)、FPGA 逻辑器件、AD 信号采样电路、DI/DO 输入输出控制电路、PWM 波形控制电路、RS485 通讯电路等组成,主要用来完成电压、电流等信号的采集和处理、指令电流的计算、开关电路的生成、PWM 信号的输出、系统对外通讯与系统保护等功能。控制系统是有源滤波器的核心,它决定了有源电力滤波器系统的主要性能和指标。
                  变流器模块 APFCOV
                  其核心是储能电容和 IGBT 模块。变流器的作用主要是将电网的电压经 IGBT 功率模块整流后为储能电容充电,使母线电压维持在某个稳定的值,在这个过程中变流器主要工作在整流状态,当主电路产生补偿电流时,变流器又工作在逆变状态。考虑到产品是在电网中长时间运行的,因此直流支撑电容采用薄膜电容,功率模块采用德国原装产品,以确保整机质量。变流器的选择根据补偿电流的大小而有所不同。
                  电抗器模块 APF-RE.DG、APF-RE.SDG
                  APF 电抗器起滤波作用,滤除 APF 发出的电网不需要的谐波。电抗器可分为单相和三相,电流从 15A 到 200A 等多种规格。
                  人机操作界面 APF-HMI
                  APF 柜在工作时,系统可以监测其网侧电流、APF 桥臂电流以及负载侧电流,用户可以通过 HMI 来对 APF 的运行模式进行设置,对于运行中出现的问题,可以产生对应的事件记录。HMI 就是我司针对电力系统,工矿企业,公用设施,智能大厦的电力监控需求而设计的一种智能仪表,它采用高亮度 TFT-LCD 彩屏显示界面,通过面板按键来实现参数设置和控制,集成全部电力参数的测量、全面的电能计量和考核管理、多种电力质量参数的分析。
                  配套的电流采样互感器 AKH-0.66-K

                  3.2.4 技术优势

                  DSP+FPGA 全数字控制方式,具有极快的响应时间;先进的主电路拓扑和控制算法,精度更高、运行更稳定;一机多能,既可补谐波,又可兼补无功;模块化设计,便于生产调试;
                  便利的并联设计,方便扩容;
                  具有完善的桥臂过流、保护功能;
                  使用方便,易于操作和维护。

                  3.2.5 有源滤波器报价及元件清单



                  4、ANAPF 有源电力滤波装置的应用实例
                  本文以某实际大型旅游客轮的综合电力推进系统为例,其基本参数如下


                  该船的电力系统主要分两大部分:6600V 中压电网和 440V 低压电网。4 台主发电机为6600V 主电网供电,主推进电机和侧推器为其主要负载;440 主电网通过变压器接在 6600V电网上,其负载包括主推进电机励磁系统、舵机、酒店电力服务系统以及其他辅助设备等。
                  当 ANAPF 未投入电网时,电网侧和负载侧的电压电流是完全相同的,所以下面仅列出了电网侧的相电压和相电流。
                  图 2 和图 3 表明,ANAPF 未投入时电网侧相电压几乎没有发生畸变,但相电流的波形畸变十分严重。下面是分别对电网侧 A 相相电压和相电流的傅里叶分析,对畸变程度进行量化(0.02s 后的 3 个周期作为傅里叶分析的对象)。


                  图 2 ANAPF 未投入时电网侧相电压波形

                  图 3 ANAPF 未投入时电网侧相电流波形



                  图 4 ANAPF 未投入时电网侧 A 相电压(左)和相电流波形及傅里叶分析


                  图 4 的傅里叶分析表明,相电压的畸变非常小,THD 值约有 2.68%,而电流的 THD 值已高达 50.56%,谐波含量已经很高,可以看到其中 5 次、7 次谐波幅值较大,已分别高达基波幅值的 46%和 23%。亟需采取谐波治理措施,以免对其他较敏感负载造成影响甚至损毁。
                  由 ANAPF 计算出的补偿电流指令信号,因补偿电流和谐波电流(以及无功电流)幅值相等相位相反,所以会相互抵消,从而使得电网电流变成只含基波的正弦形状。图 5 和图 6为 ANAPF 投入电网后电网侧的电压电流波形,与未投入时的波形图(图 2 和图 3)对比可以发现滤波效果显著,ANAPF 投入后的电压电流波形都十分接近正弦波。



                  图 5 ANAPF 投入后电网侧相电压波形



                  图 6 ANAPF 投入后电网侧相电流波形 


                  图 7 ANAPF 投入后电网 A 相电压(左)和相电流波形及其傅里叶分析 


                  图 7 的傅里叶分析表明,电网侧的电压和电流的畸变程度都减小了,尤其是电流的 THD值由先前的 50.56%下降至现在的 0.79%;电压的 THD 值现在约为 0.00%。谐波幅值占基波幅值的百分比均小于 1.1%,显然电网侧的谐波电压和谐波电流含量都能满足相关限制值的要求。以上结论表明,安科瑞 ANAPF 系列并联型有源电力滤波装置对改善电网侧的电压和电流有着显著的效果。

                  5、结语
                  目前,有源滤波器已成为电力系统治理谐波污染的主要发展方向。ANAPF 有源电力滤波器作为一种特别适合舰船电网谐波治理的优秀方案,正受到广泛关注。它的使用,较好地抑制了舰船电网中的谐波污染,极大地改善了电网的电能质量,完全满足船级社的有关规定,在船舶制造业应用方面将有着广阔的前景。

                  参考文献: 

                  [1] 冯英华,吴旖,杨平西. 综合全电力系统主发电机谐波损耗分析与算法[ J ]. 船舶工程, 2008, 30 (5) : 12215.
                  [2] 姜齐荣,赵东元,陈建业 .有源电力滤波器 ——结构原理控制[M].北京 : 科学出版社,2005.1-2,20-25.
                  [3] 宋艳琼 .电力推进船舶电网谐波抑制方案的探讨 [J].广州航海高等专科学校学报,2009,2(17): 11-14.
                  [4] 马晓军,陈建业,韩英铎,等.单相并联型有源滤波器的研究[J]. 清华大学学报: 自然科学版,1997, 37(7): 39-43.
                  [5] 胡铭,陈珩.有源滤波技术及其应用[J]. 电力系统自动化,2000,24(3),66-70.



                船舶应用
                船舶应用

                • 1、引言

                  船舶综合全电力推进系统是现行船舶平台的电力和动力两大系统发展的综合,它适合于不同种类的船舶。世界各国都在针对船舶综合全电力推进系统进行深入的研究,国外已经开发了多种类型的综合全电力推进系统并在多型船舶上应用。据统计,在 80 年代后期以来,发达国家新建的客轮、破冰船、渡轮约有 30%已采用综合全电力推进系统,且成流行趋势;国内民用船舶中全电力推进的应用已有多种形式:如江南船厂为国外设计建造的 3200 吨全电力推进化学品运输船、胜利油田的“胜利 232”号工程船、我国 2006 年交工的首艘采用综合全电力推进系统的火车滚装渡船“中铁渤海一号”。作为船舶主动力系统的综合全电力推进系统由于其高效率、高可靠性、高自动化以及低维护也成为新世纪大型水面船舶青睐的主推进系统。
                  船舶综合全电力推进系统包括:发电、输电、配电、变电、拖动、推进、储能、监控和电力管理等诸,多功能多系统的复杂性也带来了严重的谐波污染问题。综合全电力推进系统各个功能模块是否运行良好,是否相互协调好,关系着整个综合全电力推进系统是否能具有良好的运行状态和优异的工作性能。

                  2、谐波及波形畸变的产生和危害
                  2.1 谐波来源

                  综合全电力推进系统中产生的谐波来源主要有:
                  1) 推进同步发电机。推进同步发电机产生的谐波电动势是因转子和定子之间空气隙中的磁场非正弦分布所引起的。推进同步发电机每对磁极下气隙中的磁场不可能完全按正弦分布,这是由磁极结构所决定的。因此,电动势中必然含有谐波分量。
                  2) 变压器。变压器的励磁回路具有非线性电感,因此,励磁电流是非正弦波形,使得电流波形发生波形畸变。在空载时,非正弦的励磁电流在变压器原绕组的漏抗上产生压降,使变压器感应电势中包含谐波分量。变压器空载合闸时,常常会出现很大的励磁涌流。在严重的情况下,涌流波形强烈畸变,不但幅值可高达数十倍于额定空载电流,而且正负半波的波形极不对称。这种涌流持续时间比较长,属于准稳定的非正弦波。特征谐波是整流设备产生波形畸变的主要成分。由于输电系统的电压等级高、输送功率大,即使百分数很小的谐波分量也会对低压设备及弱电设备产生不可忽视的骚扰。
                  3) 变频器。船舶综合全电力推进系统采用变频进行调速,而谐波频率又随频率变化,这样对船舶电网的电源质量影响较大。变频电路输入电流的谐波分量十分复杂,其频率不仅和输入电源频率、变频电路的结构有关,而且和变频电路的输出频率有关。
                  在上述三个谐波源中推进同步发电机为谐波电压源,变压器为谐波电流源。对于谐波电流源的设备来说,即使供给它们的电压是理想的正弦波,它们所取用的电流中也会含有谐波成分。谐波的含量取决于它们本身的特性和工作状况。谐波电流注入船舶电网后,在船舶电网系统的阻抗上引起谐波压降,也会使电网系统中各点的电压产生波形畸变。

                  2.2 谐波危害

                  谐波是影响电能质量的重要因素之一,它通常是由电网中的非线性元件产生的。船舶电网中的谐波对船舶设备的运行会产生许多不利的影响:
                  1) 使船舶发电机的效率降低;
                  2) 使电气设备出现过热,振动和噪音的现象,并产生绝缘老化、使用寿命缩短,甚至发生故障或烧毁的结果;3)谐波还会引起船舶继电保护和自动控制装置的可靠性降低,产生误动作;4)谐波对通信设备和电子设备也会产生严重干扰。因此,谐波对于船舶电网是一种电磁环境的污染。

                  微电子设备在船舶测量、控制、保护、操作等系统中应用广泛,它对电流波形有较高的要求,易遭受谐波干扰。综合全电力推进系统产生的谐波通过船舶电网对船上包括测量、保护、控制、操作等系统中的仪表、仪器和设备造成影响。如谐波对计算机的干扰主要是影响磁性元件和数据处理系统的精度和性能,从而影响计算机处理数据的质量。谐波对船舶照明及生活用电等设备的影响主要表现在增加损耗、降低寿命和运行性能劣化。谐波问题日益突出和严重,国内外都发生过因谐波而引发的重大船舶事故。特别由于变频驱动的使用,使电动机绝缘物以及电缆绝缘层迅速老化、甚至烧毁;共模电压在电机转轴上感应出高的轴电压,并形成轴承放电电流从而电腐蚀轴承,使电机在短期内报废;高频传导性和辐射性 EMI 使变频驱动系统可靠性下降,故障率增加,并影响电网上的其他用电设备。因此,研究变频器所带来的负面效应及其解决方法在电力推进系统中具有重要的理论意义和实用价值。

                  3、综合电力推进系统谐波限制分析

                  为解决电力电子装置产生的谐波污染和低功率因数问题,传统的手段是设置无功补偿电容器和 LC 滤波器,这两种方法结构简单,既可以抑制谐波,又可以补偿无功功率,一直被广泛应用。但这种方法的主要缺点是补偿特性受电网阻抗和运行状态影响,易和系统发生并联谐振,此外,此种补偿方法损耗大,又只能补偿固定频率的谐波,难以对变化的无功功率和谐波进行有效的动态补偿。而随着电力系统的发展,对无功功率和谐波进行快速动态补偿的需求越来越大。目前的趋势是采用电力电子装置进行谐波补偿,即采用有源滤波器(ActivePower Filter,APF)。

                  3.1 有源滤波器的优势
                  有源滤波器的主要优点有;

                  1) 有源滤波装置是一个高阻抗电流源,它的接入对系统阻抗不会产生影响,因此此类装置适合系列化、规模化生产。
                  2) 当电网结构发生变化时装置受电网阻抗的影响不大,不存在与电网阻抗发生谐波的危险,同时还能抑制串并联谐振。
                  3) 原理上比 PPF 更为优越,用同一台装置可同时补偿多次谐波电流和非整流倍次的谐波电流,完成各次谐波的治理。
                  4) 实现动态补偿,可对频率和大小均变化的谐波及变化的无功功率进行补偿,对补偿对象的变化有极快的响应速度。
                  5) 由于装置本身能完成输出限制,当线路中的谐波电流突然增大时有源滤波器不会发生过载,并且能正常发挥作用,不需要与系统断开。
                  6) 具备多种补偿功能,可以对无功功率和负序进行补偿。
                  7) 谐波补偿特性不受电网频率变化的影响。
                  8) 可以对多个谐波源进行集中治理。

                  3.2 ANAPF 系列有源电力滤波装置

                  ANAPF 系列有源电力滤波装置作为一种用于动态抑制谐波、补偿无功的新型电力电子装置,它能够对大小和频率都变化的谐波以及变化的无功进行补偿,可克服 LC滤波器等传统的谐波抑制和无功补偿方法的缺点,实现了动态跟踪补偿,是谐波治理和无功补偿的最佳选择,是确保海上平台电力系统稳定运行的有力保障。

                  3.2.1 工作原理

                  ANAPF 系列有源电力滤波装置,以并联的方式接入电网,通过实时检测负载的谐波和无功分量,采用 PWM 变流技术,从变流器中产生一个和当前谐波分量和无功分量对应的反向分量并实时注入电力系统,从而实现谐波治理和无功补偿。(见图 1)


                  图 1 ANAPF 有源电力滤波装置的工作原理图

                  3.2.2 技术参数




                  3.2.3 功能模块介绍
                  控制器模块 APFMC-C100
                  主要由:DSP(数字信号处理器)、FPGA 逻辑器件、AD 信号采样电路、DI/DO 输入输出控制电路、PWM 波形控制电路、RS485 通讯电路等组成,主要用来完成电压、电流等信号的采集和处理、指令电流的计算、开关电路的生成、PWM 信号的输出、系统对外通讯与系统保护等功能。控制系统是有源滤波器的核心,它决定了有源电力滤波器系统的主要性能和指标。
                  变流器模块 APFCOV
                  其核心是储能电容和 IGBT 模块。变流器的作用主要是将电网的电压经 IGBT 功率模块整流后为储能电容充电,使母线电压维持在某个稳定的值,在这个过程中变流器主要工作在整流状态,当主电路产生补偿电流时,变流器又工作在逆变状态。考虑到产品是在电网中长时间运行的,因此直流支撑电容采用薄膜电容,功率模块采用德国原装产品,以确保整机质量。变流器的选择根据补偿电流的大小而有所不同。
                  电抗器模块 APF-RE.DG、APF-RE.SDG
                  APF 电抗器起滤波作用,滤除 APF 发出的电网不需要的谐波。电抗器可分为单相和三相,电流从 15A 到 200A 等多种规格。
                  人机操作界面 APF-HMI
                  APF 柜在工作时,系统可以监测其网侧电流、APF 桥臂电流以及负载侧电流,用户可以通过 HMI 来对 APF 的运行模式进行设置,对于运行中出现的问题,可以产生对应的事件记录。HMI 就是我司针对电力系统,工矿企业,公用设施,智能大厦的电力监控需求而设计的一种智能仪表,它采用高亮度 TFT-LCD 彩屏显示界面,通过面板按键来实现参数设置和控制,集成全部电力参数的测量、全面的电能计量和考核管理、多种电力质量参数的分析。
                  配套的电流采样互感器 AKH-0.66-K

                  3.2.4 技术优势

                  DSP+FPGA 全数字控制方式,具有极快的响应时间;先进的主电路拓扑和控制算法,精度更高、运行更稳定;一机多能,既可补谐波,又可兼补无功;模块化设计,便于生产调试;
                  便利的并联设计,方便扩容;
                  具有完善的桥臂过流、保护功能;
                  使用方便,易于操作和维护。

                  3.2.5 有源滤波器报价及元件清单



                  4、ANAPF 有源电力滤波装置的应用实例
                  本文以某实际大型旅游客轮的综合电力推进系统为例,其基本参数如下


                  该船的电力系统主要分两大部分:6600V 中压电网和 440V 低压电网。4 台主发电机为6600V 主电网供电,主推进电机和侧推器为其主要负载;440 主电网通过变压器接在 6600V电网上,其负载包括主推进电机励磁系统、舵机、酒店电力服务系统以及其他辅助设备等。
                  当 ANAPF 未投入电网时,电网侧和负载侧的电压电流是完全相同的,所以下面仅列出了电网侧的相电压和相电流。
                  图 2 和图 3 表明,ANAPF 未投入时电网侧相电压几乎没有发生畸变,但相电流的波形畸变十分严重。下面是分别对电网侧 A 相相电压和相电流的傅里叶分析,对畸变程度进行量化(0.02s 后的 3 个周期作为傅里叶分析的对象)。


                  图 2 ANAPF 未投入时电网侧相电压波形

                  图 3 ANAPF 未投入时电网侧相电流波形



                  图 4 ANAPF 未投入时电网侧 A 相电压(左)和相电流波形及傅里叶分析


                  图 4 的傅里叶分析表明,相电压的畸变非常小,THD 值约有 2.68%,而电流的 THD 值已高达 50.56%,谐波含量已经很高,可以看到其中 5 次、7 次谐波幅值较大,已分别高达基波幅值的 46%和 23%。亟需采取谐波治理措施,以免对其他较敏感负载造成影响甚至损毁。
                  由 ANAPF 计算出的补偿电流指令信号,因补偿电流和谐波电流(以及无功电流)幅值相等相位相反,所以会相互抵消,从而使得电网电流变成只含基波的正弦形状。图 5 和图 6为 ANAPF 投入电网后电网侧的电压电流波形,与未投入时的波形图(图 2 和图 3)对比可以发现滤波效果显著,ANAPF 投入后的电压电流波形都十分接近正弦波。



                  图 5 ANAPF 投入后电网侧相电压波形



                  图 6 ANAPF 投入后电网侧相电流波形 


                  图 7 ANAPF 投入后电网 A 相电压(左)和相电流波形及其傅里叶分析 


                  图 7 的傅里叶分析表明,电网侧的电压和电流的畸变程度都减小了,尤其是电流的 THD值由先前的 50.56%下降至现在的 0.79%;电压的 THD 值现在约为 0.00%。谐波幅值占基波幅值的百分比均小于 1.1%,显然电网侧的谐波电压和谐波电流含量都能满足相关限制值的要求。以上结论表明,安科瑞 ANAPF 系列并联型有源电力滤波装置对改善电网侧的电压和电流有着显著的效果。

                  5、结语
                  目前,有源滤波器已成为电力系统治理谐波污染的主要发展方向。ANAPF 有源电力滤波器作为一种特别适合舰船电网谐波治理的优秀方案,正受到广泛关注。它的使用,较好地抑制了舰船电网中的谐波污染,极大地改善了电网的电能质量,完全满足船级社的有关规定,在船舶制造业应用方面将有着广阔的前景。

                  参考文献: 

                  [1] 冯英华,吴旖,杨平西. 综合全电力系统主发电机谐波损耗分析与算法[ J ]. 船舶工程, 2008, 30 (5) : 12215.
                  [2] 姜齐荣,赵东元,陈建业 .有源电力滤波器 ——结构原理控制[M].北京 : 科学出版社,2005.1-2,20-25.
                  [3] 宋艳琼 .电力推进船舶电网谐波抑制方案的探讨 [J].广州航海高等专科学校学报,2009,2(17): 11-14.
                  [4] 马晓军,陈建业,韩英铎,等.单相并联型有源滤波器的研究[J]. 清华大学学报: 自然科学版,1997, 37(7): 39-43.
                  [5] 胡铭,陈珩.有源滤波技术及其应用[J]. 电力系统自动化,2000,24(3),66-70.